LARGE SPARSE EIGENVALUE PROBLEMS

e Projection methods
e The subspace iteration
e Krylov subspace methods: Arnoldi and Lanczos

e Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

» Projection techniques — Arnoldi, Lanczos, Subspace lteration;
» Preconditioninings: shift-and-invert, Polynomials, ...
» Deflation and restarting techniques

» Computational codes often combine these three ingredients
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A few popular solution Methods

e Subspace Iteration [Now less popular — sometimes used for validation]
e Arnoldi’s method (or Lanczos) with polynomial acceleration

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for (A —
ol)™1]

e Davidson’s method and variants, Jacobi-Davidson
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Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L
» Given: Two subspaces K and L of same dimension.

» Approximate eigenpairs , @, obtained by solving:

Find: A € C,a2 € K suchthatAI — A)a L L
» Two types of methods:
Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When L # K.

» First situation leads to Rayleigh-Ritz procedure
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Rayleigh-Ritz projection

Given: subspace X known to contain good approximations to eigenvectors of A.
Question: How to extract ‘best’ approximations to eigenvalues/ eigenvectors from
this subspace?

Answer: | Orthogonal projection method

> Let Q = [q1, . . ., @m] = Orthonormal basis of X

» Orthogonal projection method onto X yields: Q¥ (A —AI)a =0 —

> | Q¥ AQy = Ay where & = Qy | Known as Rayleigh Ritz process
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Procedure:

1. Obtain an orthonormal basis Q of X

2. Compute C = Q7 AQ (an m X m matrix)

3. Obtain Schur factorization of C, C = YRY H
4. Compute U = QY

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues
and eigenvectors.

Proof: Since X is invariant,~(A — 5\I)u = Qz for a certain z. Q#Qz = 0 implies
z = 0 and therefore (A — AI)u = 0.

» Can use this procedure in conjunction with the subspace obtained from subspace
iteration algorithm
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Subspace Iteration

Original idea: projection technique onto a subspace of the form Y = A*X

Practically: A replaced by suitable polynomial

Advantages: e Easy to implement (in symmetric case);
e Easy to analyze;

Disadvantage: Slow.

» Often used with polynomial acceleration: A*X replaced by Cy(A)X. Typically
C}, = Chebyshev polynomial.
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Algorithm: Subspace lteration with Projection

1. Start: Choose an initial system of vectors X = [xg,..., %] and an initial
polynomial C.
2. lterate: Until convergence do:
(a) Compute Z = Cr(A)X. [Simplestcase: Z = AX]
(b) Orthonormalize Z: [Z, Rz] = qr(Z,0)
(c) Compute B = ZH AZ
(d) Compute the Schur factorization B = Y RgY ¥ of B
(e) Compute X := ZY.
(f) Test for convergence. If satisfied stop. Else select a new polynomial C;, and
continue.
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THEOREM: Let Sy = span{xi, z2,...,x,} and assume that Sy is such that the
vectors {Px;}i—1,..m, are linearly independent where P is the spectral projector
associated with Ay, ..., \,,. Let Py the orthogonal projector onto the subspace
Sr = span{Xy}. Then for each eigenvector u; of A, ¢ = 1,...,m, there exists
a unique vector s; in the subspace Sy such that Ps; = wu;. Moreover, the following
inequality is satisfied

1

Am &
1T = Po)uslla < llus — sills (‘ s +ek) : M

where € tends to zero as k tends to infinity.
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KRYLOV SUBSPACE METHODS

Krylov subspace methods

Principle:  Projection methods on Krylov subspaces:

K,.(A,v,) = span{vy, Avy, -+ , A" 1o, }

e The most important class of projection methods [for linear systems and for eigen-
value problems]

¢ Variants depend on the subspace L
» Let p = deg. of minimal polynom. of v;. Then:

e K,, = {p(A)v;|p = polynomial of degree < m — 1}

e K,, = K, forallm > u. Moreover, K, is invariant under A.

e dim(K,,) = miff u > m.
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Arnoldi’s algorithm

» Goal: to compute an orthogonal basis of K,,.

» Input: Initial vector vy, with ||vq||2 = 1 and m.

ALGORITHM : 1 - Arnoldi’s procedure

Forj =1,...,mdo
Compute w := Awv;
hi’j = (w,'vi)

Fori=1,...,7,do
¢ ’ »J w i =w —hi,jvi

hji1,; = [|[wll2;
viy1 = w/hj;
End

» Based on Gram-Schmidt procedure
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Result of Arnoldi’s algorithm

r x T T «
T * T T x
r x T T =«
T * T T x
— r T x =T
Let: H,, = , H,, = r T T =
r T x
r x x
r x
r x
T

ResuHs:l

1. Vi = [v1, V2, ..., U] Orthonormal basis of K,.

2. AVm == m«l»lﬁm = V,H, + hm+1,mvm+le:,rn

T o _—
3.V, AV,, = H,, = H,,— last row.
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Application to eigenvalue problems

» Write approximate eigenvector as u = V,,,y
» Galerkin condition:

(A=XD)Vyy L Ky — VHA-X)V,y=0

» Approximate eigenvalues are eigenvalues of H,,
Hnyj = Ajy;
» Associated approximate eigenvectors are
Uj = Vinyj

> Typically a few of the outermost eigenvalues will converge first.
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Hermitian case: The Lanczos Algorithm

» The Hessenberg matrix becomes tridiagonal :

A=AH and VHAV,, =H, — H,=HY

» Denote H,, by T}, and H,, by T,,,. We can write

ay (B2
B2 az B3
(8%
Tm — :63 3 ﬁ4
ﬁm am
» Relation AV,, = V,,, .1 T,
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> Consequence: three term recurrence
Bit1vjt = Avj — ajvj — Bivj

ALGORITHM : 2. Lanczos

1. Choose an initial v, with ||v1||2 = 1;
SetB3, =0,v9=0

2. Foryj=1,2,...,m Do:

3 wj 1= A’Uj — ﬁj’l)j_l

4 aj = (wj,vj)

5. wj 1= W — Ov;

6 Bj+1 := ||lwjl|2. If Bj+1 = 0 then Stop

7. i i=wi/Bin

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos
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» In theory v;’s defined by 3-term recurrence are orthogonal.

» However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first
eigenpair has converged. It is a sign of loss of linear independence of the computed
eigenvectors. When orthogonality is lost, then several the copies of the same
eigenvalue start appearing.

Reorthogonalization

> Full reorthogonalization — reorthogonalize v;,, against all previous v;’s
every time.

» Partial reorthogonalization — reorthogonalize v;,; against all previous
v;'s only when needed [Parlett & Simon]

» Selective reorthogonalization — reorthogonalize v;,, against computed
eigenvectors [Parlett & Scott]

» No reorthogonalization — Do not reorthogonalize - but take measures to
deal with 'spurious’ eigenvalues. [Cullum & Willoughby]
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Lanczos Bidiagonalization o1 B
az (B2
» We now deal with rectangular matrices. Let A € R™*™, B, = ;
ALGORITHM : 3. Golub-Kahan-Lanczos Let:
op Bp

1. Choose an initial vy with ||vy||2 = 1;
SetBy=0,u9g =0
Fork =1,...,p Do:
U := Avg — Br—1uk—1

2.
3
4. ar=|al2; ux=1d/o
5. v = AT'U/k. — QUL
6.  Br=I%|l2;5  vkr1:=77/Bk
7. EndDo
Let: Vor1 = [v1,v2,++ ,vp41] € R7X(p+1)
. Up - [uh U2y * - 7up] € R™XP
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>BP: p(:vlzp)

)‘/p: [U17U2,°" ,Up] GRHXP
"/;;1-;1‘/114—1:1
> UJU, =1

Result:

> AV, = U,B,
> ATUp — p+1B11;
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» Observe that :

AT(AV,)

AT(U, B,)
V, BB,

> BZBP is a (symmetric) tridiagonal matrix of size (p + 1) X p

» Call this matrix T},. Then:

» Standard Lanczos relation !

(ATA)V, = VT,

» Algorithm is equivalent to standard Lanczos applied to AT A.

» Similar result for the u;’s [involves AAT]

Work out the details: What are the entries of T}, relative to those of B,,?
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