SOLVING LINEAR SYSTEMS OF EQUATIONS

e Background on linear systems

e Gaussian elimination and the Gauss-Jordan algorithms

e The LU factorization

e Gaussian Elimination with pivoting — permutation matrices.

e Case of banded systems

Background: Linear systems

The Problem: A is an n X m matrix, and b a vector of R™. Find x such that:

Ax =b

» x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:

|
o

2ZE1 + 4$2 + 4333 244 Ty
x1 + Bxy + 63 = 4 or 156 o
Ty + 3x2 + T3 = 131 T3

|
®

Solution of above system ?
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» Standard mathematical solution by Cramer’s rule:

x; = det(A;)/ det(A)

A; = matrix obtained by replacing ¢-th column by b.

» Note: This formula is useless in practice beyond n = 3 or n = 4.

Three situations:

1. The matrix A is nonsingular. There is a unique solution given by x = A~!b.
2. The matrix A is singular and b € Ran(A). There are infinitely many solutions.
3. The matrix A is singular and b ¢ Ran(A). There are no solutions.
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20

. 0.5
solution x = 9 |

(i) ()

» infinitely many solutions: z(a) = (0(;(5) Vo

Example: |(3) Let A same as above, but b = (i) .

» No solutions since 2nd equation cannot be satisfied
34

Example: |(2) Case where A is singular & b € Ran(A):

Example: |(1) Let A = (O 4) b = <;> . A is nonsingular » a unique
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Triangular linear systems

Example:
2 4 4 T 2
0 5 —2 2| = |1
0 0 2/ \x; 4

» One equation can be trivially solved: the last one. x5 = 2

» x5 is known we can now solve the 2nd equation:

529 —2x3 =1 — By —2X2=1 — x3=1

» Finally x; can be determined similarly:

2x¢1 +4xy + 43 =2 — ... > ;1 = —5H
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ALGORITHM : 1. Back-Substitution algorithm

Fori =m:—1:1 do:
t:= bl
Forj =14+ 1:ndo
t =t — ayx; t:=b; — (ai,.iJrl:na Tit1:n)
End = b; — an inner product
Xr; = t/aii
End

» We must require that each a;; # 0

» Operation count?
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Column version of back-substitution

Back-Substitution algorithm. Column version

Fory=mn:—1:1do:

zj =bj/aj;
Fort=1:35 —1do
bi = bz — X5 * Qyj
End
End

Justify the above algorithm [Show that it does indeed compute the solution]

» Analogous algorithms for lower triangular systems.
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Linear Systems of Equations: Gaussian Elimination

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will
transform a linear system into one that is triangular. Main operation: combine

rows so that zeros appear in the required locations to make the system
triangular.

Notation: use a Tableau:

21 + 4z + 43 = 2 2 4 4 2
x; + 3xy + 1lxg = 1 tableau:) 1 3 1|1
1 -|— 5%2 + 6$3 = —6 1 5 6| —6
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» Main operation used: scaling and adding rows.

Example: | Replace row2 by: row?2 - %*row1:

Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

2 4 4| 2 2 4 4| 2
2 4 4| 2 xr x x|
1 3 11| —]0 1 —-1|0 .
1 5 6l —6 1 5 6l —6 1 3 1|1 |into:] 0 = xx
1 5 6|—6 0 = x|z
» This is equivalent to:
1 0 0 2 4 4] 2 2 4 4| 2 rowsy = TOWz—%XTO’lUlz rows 1= TOWg—%XTO'UJl:
1 —
-3 1 0x/1 3 1/1|=/0 1 —-10 > 4 4 2 5 4 4] 2
0 0 1 |1 5 6/—6 1 5 6—6 0 1 -1 0 0 1 -1 0
1 5 6 —6 0 3 4 -7
0
> The left-hand matrix is of the form M = I — vef withv = | 1
0
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» Equivalent to
2 4 4| 2
rows:=rows—3 Xrowy:— | 0 1 —1|0
1 0 O 2 4 4| 2 2 4 4| 2 0 0 v 7
_%10X1311:01_10 » Equivalent to
-1 0o 1 1 5 6-6 |0 3 4-7 au
1 0 O 2 4 4| 2 2 4 4| 2
0 o 1 0x/0 1 —-1/0|=]0 1 —-1|0
[A,b] — [MyA, Mb]; My =1 —vWel; o0 =11 0 -3 1 0 3 4 -7 0 0 7-7
1
2
» Second transformation is as follows:
» New system A;x = b;. Step 2 must now transform: 0
2 4 4| 2 r T x|T [A1,b1] = [M2Aq, Msby]; M2=I—'v(2)eg; v® =10
0O 1 -1/ 0 |into:|] 0 = x|z 3
0o 3 4| -7 0 0 x|x )
» Triangular system » Solve.
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Gaussian Elimination in a picture

ALGORITHM : 2

Gaussian Elimination

1. Fork =1 :n — 1 Do:
2. Fori =k +1:n Do:
Pivot column 3. Piv i= i/ ak
¢ a(k,k) 4. Fory:=k+1:n+1Do:
__I'i___\s.__ / Row k 5. Q5 = Q45 —pi’U * Qg
6. End
g : o 6. End
| L | | Piv=alkyatk) For i=k+1:n Do 7. End
baebbal b . Row i piv = a(i,k)/a(k,k)
A row(i):=row(i) - pivrow(k) » Operation count:
\‘\ ,’I n—1 n n+1 n—1 n
- T=> > 1+ > 2/=> > (2n—k)+3)=..
k=1 i=k+1 j=k+1 k=1 i=k+1
Complete the above calculation. Order of the cost?
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The LU factorization

» Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to m — 1 successive
Gaussian transformations, i.e., multiplications with matrices of the form M, =
I — v®el, where the first k components of v*) equal zero.

)SetA()EA

A—)MlA():A]_ — M2A1 :A2 —)M3A2:A3'°'
— Mn—lAn—2 - An—l =U

» Last Ay, = U is an upper triangular matrix.
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» At each step we have: A = M,;rllAkH . Therefore:

A() == MI_IAI

—1 —1 —1 —1
= MMM M AL
> L=M;"M;"M;" ..M,

» Note: L is Lower triangular, A,,_ is upper triangular

» LU decomposition : A = LU
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M. 'M;'A,
M 'M;'M; ' A
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L=M7*M;*M; - MY

» Consider only the first 2 matrices in this product.
» Note M, ' = (I —vWel)~! = (I +v®el). So:
MMy = (I +vWeT)(I 4+ vPel) = I + vMel 4 v@el.

» Generally, | MMt Mk_1 =TI+ U(l)ef + U(z)eg + ... 'U(k)ef

The L factor is a lower triangular matrix with ones on the diagonal. Column k of
L, contains the multipliers ;; used in the k-th step of Gaussian elimination.

» There is an ‘algorithmic’ approach to understanding the LU factorization [see

supplemental notes]
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A matrix A has an LU decomposition if
det(A(1:k,1:k))#0 for k=1,---,n—1.

In this case, the determinant of A satisfies:
det A = det(U) = [] ua
=1

If, in addition, A is nonsingular, then the LU factorization is unique.
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Practical use: Show how to use the LU factorization to solve linear systems with
the same matrix A and different b’s.

244
LU factorization of the matrix A = [ 1 5 6 | ?
131

Determinant of A?

True or false: “Computing the LU factorization of matrix A involves more
arithmetic operations than solving a linear system Ax = b by Gaussian elimination”.

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even
easier to solve than triangular systems, namely a diagonal system. The method is
very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2 4 4| 2 r x x|x
1 3 1|1 |into:] 0 = =xx
1 5 6/—6 0 = xx
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rows := rows — 0.5 X row;: rows:= rowz — 0.5 X rows:

There is now a third step:

2 4 4/ 2 2 4 4, 2 2 0 8| 2 x 0 O]z
0 1 —-10 0 1 -—-10 Totransform:) 0 1 —1| 0 |into:] 0 =z 0|z
1 5 6/-6 0 3 4|7 0 0 7\-7 0 0 xzx
2 4 4| 2 € x| T row| := Tow; — % X rTows. TOWsz i= TOW3y — _71 X rows:
Step2:/ 0 1 —1| 0 |into:| O T|T
0 3 4 7 0 x|z 2 0 010 2 0 o0]10
0O 1 -—-1/0 0O 1 01
row; := row; — 4 X rows. rows:= rows— 3 X rows:. 0O O TI=7 o o0 7/ -7
2 0 8| 2 2 0 8| 2 Solution:
0 1 —10 0 1 -1 0 olution: 3 = —1; o = —1; 1 =5
0o 3 4|-7 0 O 7T =7
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Gauss-Jordan Elimination in a picture ALGORITHM : 3. Gauss-Jordan elimination
1. Fork =1 : n Do:
_____ ____ 2. Fori =1:nandifi'! = k Do :
""" \'\ij 7 3 pi’U = aik/akk
4. Forj:=k+1:n+1Do:
SN a(k,k) .
IR 5. a;j = a;j — piv * ai;
Er it e Rowk 6. End
! ‘: 6. End
! a(i,k)/a(k,k) 7. End
TIIIIITIEE Rowi
: A » Operation count:
\‘\ ,'/ n n—1 n+1 n n-—1
S SDWED EEDIDICEENET NS
k=1 i=1 j=k+1 k=1 i=1

3-23

GvL 3.{1,3,5} — Systems

Complete the above calculation. Order of the cost? How does it compare with

Gaussian Elimination?
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function x = gaussj (A, Db)

function x = gaussj (A, Db)

solves A x = b by Gauss-Jordan elimination
n = size(A,1) ;
A = [A,Db];
for k=1:n
for i=1:n
if (i "= k)
piv = A(i,k) / A(k, k) ;
A(i,k+l:n+l) = A(i,k+tl:n+l) - pivxA(k,k+1l:n+1);
end
end
end
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Gaussian Elimination: Partial Pivoting

Consider again GE 2z + 2%y + dwg = 2 2 2 42
for the system: it @+ @xp= 101 1 11
ystem: T, + 4@y + 6x5 = —5 1 4 6-5
> rToOwsy := TOWs3y — % X rows: » rows := rows — % X rows:
2 2 4| 2 2 2 4| 2
0O 0 -—-1|0 0O 0 -—-1]0
1 4 6|—5 0 3 4|—6

» Pivot as, is zero. Solution : permute
rows 2 and 3:
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Gaussian Elimination with Partial Pivoting

Partial Pivoting Bk
Row k

Largest‘aik

» General situation:

Always permute row k with row I such that lai| = max;—y, ... n |aix|

» More ‘stable’ algorithm.
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The matlab script gaussp will be provided. Explore it from the angle of an actual
implementation in a language like C. Is it necessary to ‘physically’ move the rows?
(moving data around is not free).
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Pivoting and permutation matrices

» A permutation matrix is a matrix obtained from the identity matrix by permuting its
rows

» For example for the permutation = = {3, 1, 4, 2} we obtain
0010
1000

0001
0100

» Important observation: the matrix P A is obtained from A by permuting its rows
with the permutation 7

(PA)z, = Aﬂ(i),:
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What is the matrix P A when

0010 1 2 3 4
1000 5 6 7 8
= = ?
P 0001 A 9 0-12
0100 —34—-56

» Any permutation matrix is the product of interchange permutations, which only
swap two rows of I.

» Notation: E;; = Identity with rows 7 and 5 swapped
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Example: |To obtain # = {3,1,4,2} from = = {1,2,3,4} — we need to
swap 7 (2) <> w(3) then w(3) <> mw(4) and finally w(1) <> 7 (2). Hence:

0010

1000
P = 0001 :E1’2XE3’4XE273

0100
In the previous example where
> A =1[11234, 5678, 9 0-12,; -34-5¢6]

Matlab gives det(A) = —896. What is det(PA)?
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» At each step of G.E. with partial pivoting:

My 1B 1A = Agta

where Ej, encodes a swap of row k + 1 withrow ! > k + 1.

> Notes: (1) E;' = E; and (2) M; ' X Ejy1 = Epyq X ;" for k > j, where
M has a permuted Gauss vector:
(I +vYel)Epy1 = Expa(I + EgpavWel)
= =) T
= Ek+1({—|—'v3 €;)
Ey 1 M;

» Here we have used the fact that above row k& + 1, the permutation matrix Ey. 1
looks just like an identity matrix.
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Result:

Ay = E;M['A,
= E\M{'E;M;'A; = E\E;M['M; A,
= E\E;M['M; 'EsM; ' A;
= E\EyEsM;'M;*M; ' A;

= El"'En—l X MflMglM;I"'M_l X An—l

n—1

Special case of banded matrices
» Banded matrices arise in many applications
» A has upper bandwidth g if a;; =0forj —2 > g

» A has lower bandwidth pif a;; =0 fori —j > p

Explain how GE would work on a banded system
(you want to avoid operations involving zeros) —

» In the end . .
Hint: see picture
PA=LUwWthP=E, - --E; N
» Simplest case: tridiagonal » p = q = 1.
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» First observation: Gaussian elimination (no pivoting) preserves the initial banded
form. Consider first step of Gaussian elimination:

2. For: =2 : n Do:

3. a;1 := a;1/a1; (pivots)
4. Forj:=2:nDo:

5. Qij = Q;j — Q31 * Ay
6. End

7.

End

> If A has upper bandwidth g and lower bandwidth p then so is the resulting [L /U]
matrix. » Band form is preserved (induction)

Operation count?
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What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth g, and if Gaussian elimination with
partial pivoting is used, then the resulting U has upper bandwidth p + q. L has at
most p + 1 nonzero elements per column (bandedness is lost).

» Simplest case: tridiagonal » p = q = 1.

Example:

11000
21100
A=102110
00211
00021
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