CSci 5304, F°24  Solution keys to some exercises from: Set 3

#11| Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result (Axz, y) =

(x, AHy):

1Qz|; = (Qz,Qz) = (z,Q" Q) = (z,z) = ||z|j. m

#3[ When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we

have equality when x = Ay, i.e., when they are colinear.[]

#4| Expand (x + y,  + y) — What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from

this expansion and the Cauchy-Schwarz inequality. [1.

e Proof of the Holder inequality.

(@, )| < llzllpllyllq , with ; + ¢ =1
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Proof: For any z;, v; all nonnegative we have, setting { = ) z;,

(Z(zi/C)w)p

IA

Z (zi/C)v; (convexity) —

(3 zmi)” < [P zis)ob] v = [ zob] ¢t =
Z ziv; < Z zi’vf] e ¢P—1)/p
Z ziv; < Z wa] 1/p [Z Zii| 1/q

1_
Now take z; = «, and v; = y; * ; . Then z;v; = x;y; and:

p
)

N l—g\p __ P q+p—pq __ .. P o__ ,.p
ziv; = *(yixx; )P = y; *x; =y, xx; ==vy; O

#5| Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

|zl = (z—y)+yll < [le—yll+llyll = llzl]=llyll < [[z—yl
Next exchange the roles of & and y:
lyll = llzll < lly — || = llz -yl

The two inequalities [lz]] — lyll < |l — yl| and ||y|| — ||=|| <

||z — y|| yield the result since they imply that

—llz =yl < llzll = llyll < llz —yll
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#6| Consider the metric d(x, y) = max;|x; — y;|. Show that any

norm in R" is a continuous function with respect to this metric.

Solution: We need to show that we can make ||y|| arbitrarily close to
||z || by making y ‘close’ enough to @, where ‘close’ is measured in
terms of the infinity norm distance d(x,y) = || — y||co. Define
u = a — y and write u in the canonical basis as u = 2?21 0,€;.

Then:

lull = 11 ) dieall < D16l lleill < max |8 ) [lel
i=1 i=1 i=1
Setting M = Y " ||e;|| we get
Jull £ M max |§;| = M|z — ylo
Let € be given and take x, y such that || — y||cc < 7. Then, by
using the second triangle inequality we obtain:
C
izl =iyl | < llz — yll < Mmaxd; < M- = e

This means that we can make ||y|| arbitrarily close to ||«|| by making

y close enough to x in the sense of the defined metric. Therefore ||.||

1S continuous.
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#r7| In R™ (or C™) all norms are equivalent.

Solution: We will do it for ¢y = ||.|| some norm, and ¢ = ||.]||c0

[and one can see that all other cases will follow from this one].

1. Need to show that for some o we have ||z|| < al|z||. Express a
in the canonical basis of R™ as * = ) x;e; [look up canonical basis

e; from your csci2033 class.] Then

lzll =11 ) zieill <) lzillleill < max|zi| ) [leill = [|l]loe
where a = ) ||e;]|.

2. We need to show that there is a 3 such that ||z|| > B||z||co-
Assume x # 0 and consider u = x/||x||. Note that u has infinity
norm equal to one. Therefore it belongs to the closed and bounded set
Sooc = {v|||v||lcc = 1}. Since norms are continuous (seen earlier),
the minimum of the norm ||u|| for all w’s in S, is reached, i.e., there

1Isaug € S such that

min [ul] = [Juo.
Let us call 3 this minimum value, i.e., |ug|| = 3. Note in passing that

B3 cannot be equal to zero otherwise ug = 0 which would contradict

the fact that ug belongs to S, [all vectors in S, have infinity norm
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equal to one.] The result follows because © = «/||x||, and so,

remembering that u = x/||x||~, We obtain

This completes the proof

2 B = llz|l = Bllzll

] ‘

2]

#8| Show that for any x: ﬁﬂwﬂl < |lz|lz < ||=|1

Solution: For the right inequality, it is easy to see that ||x||2 < ||z||1

because >, 2 < [Y; |=i|)

For the left inequality, we rely on Cauchy-Schwarz. If we call 1 the

vector of all ones, then:

lzlly = ) |zil-1 < |lzl2|Onellz = vn|lz||

#19| Unit balls in R2.

infinity-Norm

2-Norm

#14| Show that p(A) < || A]| for any matrix norm.
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Solution: Let A be the largest (in modulus) eigenvalue of A with

associated eigenvector w. Then

Au
A=~ L= |3 = p(a)
This implies that
A
p(A) < max A2 _ 4
22 el

#15( Is p(A) anorm?

Solution: This was answered in the notes.

#116| Given a function f(t) (e.g., €*) how would you define f(A)?

[ You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expan-
sion..

O, IO %) (0)

k
21 mo At

f(A) =

However, this will require a justification: Will this expression ‘con-
verge’ as the number of terms goes to infinity? This is where norms

are useful.
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In the simplest case where A is diagonalizable you can write A =
X DX ™! and then consider the k-term part of the Taylor series ex-

pression above:

. O O o 100
2! k!
_ f() 1) 190 ]
= o 24 .. 4 o DF| X

XD, X!

where Dy, 1s the matrix inside the brackets in line 2 of above equations.

The ¢ — th diagonal entry of Dy is of the form

f’( )x, f”( ) \2 f("’)(O) N

.fk:(>\)— ‘|‘ k! ,7

which is just the k-term part of the Taylor series expansion of f(}\;).
Each of these will converge to f(\;). Now it is easy to complete the
argument. If we call D the diagonal matrix whose zth diagonal entry

is f(\;) and F4 the matrix defined by

Fy=XD;X 1,
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then clearly

[ Fe — Fallz = [|X(Dx — Dp) X 7Hl2 < [ X l2| X ]2l D — Dyl
< X2/ X7 l2 max [ fr(Ai) — £(X)]

which converges to zero as k goes to infinity.

#117| The eigenvalues of A” A and AAH are real nonnegative.

Solution: Let us show it for AH A [the other case is similar] If X, u
is an eigenpair of AH A then (AH¥ A)u = Au. Take inner products

with uw on both sides. Then:
A(u,w) = (A7 A)u, u) = (Au, Au) = || Au|?

Therefore, A = ||Awl|?/||w||? which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact.
It is based on the result (Az, y) = (x, AHy). 2) The singular values
of A are the square roots of the eigenvalues of A” A if m > mn or
those of the eigenvalues of AAH if m < n. So there are always
min(m, n) singular values. This is really just a preliminary definition
as we need to refer to singular values often — but we will see singular

values and the singular value decomposition in great detail later. ]
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#18| Prove that when A = uwv? then ||Al|2 = ||ul|2||v]|2.

Solution: We start by dealing with the eigenvalues of an arbitrary
matrix of the form A = wuwv? where both u and v are in R”. From

Ax = \x we get:

uvlz = A — (viz)u = Az

T

Notice that we did this because v* x 1s a scalar. We have 2 cases.

Case 1: vTx = 0. In this case it is clear that the equation Ax = Ax
is satisfied with A = 0. So any vector that is orthogonal to v is an
eigenvector of A associated with the eigenvalue A = 0. (It can be

shown that the eigenvalue O is of multiplicity n — 1).

Case 2: vz # 0. In this case it is clear that the equation Ax = Az
is satisfied with A = vTu and £ = u. So w is an eigenvector of A

associated with the eigenvalue v’ x.

In summary the matrix uv? has only two eigenvalues: 0, and vTu.

T

Going back to the original question, we consider now A = wwv" and

we are interested in the 2-norm of A. We have

IA]l5 = p(ATA) = p(vu'uv™) = ||lullzp(vv") = [ull3llv].
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The last relation comes from what was done above to determine the

eigenvalues of vvl. Soin the end, ||Al|2 = ||u||2||v]|2.

# 19| In this case what is || A||¢?

Solution: Only the last part of the above answer changes ( p is re-

placed by Tr) and you will find that actually the Frobenius norm of

uv? is again equal to ||ul|2]|v]|2.

Proof of Cauchy-Schwarz inequality: | |(z,y)|? < (z,z) (y,y).

Proof: We begin by expanding (x — Ay, * — Ay) using properties of

inner products:

(x — Ay, — Ay) = (z,z) — A(z,y) — Ay, z) + |A[*(y, y).

If y = 0 then the inequality is trivially satisfied. Assume thaty # 0
and take A = (x,vy)/(y,y). Then, from the above equality, (x —
Ay, — Ay) > 0 shows that

[(z,y)|* | [(z,9)]?

0< (z—Ay,z—Ay) = (z,z) — 2 (¥, y) i (¥, y)
N (C )]s
= (@) (y,y)

which yields the result.
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PROOF OF EXPRESSION of || A |1 max_j || A (:,3) Il

max of 1-norms of the columns of A

Definition:
A lla = max_{]Ix][. =1} || Ax |1
Let n =max; || AC:, )]l = ||AC:,§0)]|1 where jeo = index of col

that reaches the max

Part 1) ||All: < n
let x any vector s.t. |[|x|.=1
A Ila =1 X xi AC:,3) Hla < 2 Ixal IFAC ).
< 3ioIxil max || AC:, )= X Ixi] o

I Ax]l:

IN

n i Ixil =n

==> ||All:

IN

n O
Part 2) ||A]l1= n
Assume max reached for jo
let x = ejo = [ 0; 0; ., 0; 1; 0 ....]
A- position jO

A ej

jth column of A - note that A ejo = A(:,Jje)= Jjo-th column of A

for Xx = ejo -

Then || A x |lx = || A(:,30) [l2=n

For one particular x || A x[]l1 = n -

so max || Ax ||» over all x's with || x |]+ =1 is = n
max_{x | |[x|][= =213} [ Ax|.=2n

==> ||All. 2 n O
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EXPRESSION FOR INFINITY NORM OF A = max_i || A (i,:) |2

NOTE: 1In the following || . ||l is the infinity norm
To show || A ||_ = max of 1-norms of the *rows* of A
Definition: Al = max_{||x|l_ = 1} || Ax ||l_
Let n = maxi || A(L, )]lx = [JA(L0, :)]|2 where i0 = index of row

that reaches the max

Part 1) ||All_ < n
Let x any vector s.t. |[|x]l_ =1
(AX) i = ¥ A(i,j) x5 -
[(A)il = %i A T xi | -
< % IA(L,3)1 maxj | x|
< i AL =1 AGE ) s

take max over i:

| Ax ||l < n for all x with || x ||l_ =1
===> ||AllL < n O

Part 2) ||All_ =2 n

Assume max reached for i0

let xo¢ = vector of signs of the row A(iOQ,:)
= [ +1; #1,....,%1]
clearly || xo [ =1
Then can show that
Il Axo |l-=n
== similar argument as for || || to complete proof
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