✓ 1 Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result $(Ax, y) = (x, A^H y)$:

$$\|Qx\|_2^2 = (Qx,Qx) = (x,Q^HQx) = (x,x) = \|x\|_2^2.$$

✓ 3 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when $x = \lambda y$, i.e., when they are colinear.

Solution: You will see that you can derive the triangle inequality from this expansion and the Cauchy-Schwarz inequality. \Box .

• Proof of the Hölder inequality.

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$

Proof: For any z_i, v_i all nonnegative we have, setting $\zeta = \sum z_i$,

$$\left(\sum (z_i/\zeta)v_i\right)^p \leq \sum (z_i/\zeta)v_i^p ext{ (convexity)}
ightarrow \\ \left(\sum z_iv_i\right)^p \leq \left[\sum (z_i/\zeta)v_i^p\right]\zeta^p = \left[\sum z_iv_i^p\right]\zeta^{p-1}
ightarrow \\ \sum z_iv_i \leq \left[\sum z_iv_i^p\right]^{1/p}\zeta^{(p-1)/p} \\ \sum z_iv_i \leq \left[\sum z_iv_i^p\right]^{1/p}\left[\sum z_i\right]^{1/q}$$

Now take $z_i = x_i^q$, and $v_i = y_i * x_i^{1-q}$. Then $z_i v_i = x_i y_i$ and:

$$z_i v_i^p = x_i^q * (y_i * x_i^{1-q})^p = y_i^p * x_i^{q+p-pq} = y_i^p * x_i^0 == y_i^p \quad \Box$$

Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

$$\|x\| = \|(x-y) + y\| \le \|x-y\| + \|y\| \to \|x\| - \|y\| \le \|x-y\|$$

Next exchange the roles of x and y:

$$||y|| - ||x|| \le ||y - x|| = ||x - y||$$

The two inequalities $\|x\|-\|y\|\leq \|x-y\|$ and $\|y\|-\|x\|\leq \|x-y\|$ yield the result since they imply that

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|$$

Consider the metric $d(x,y) = max_i|x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Solution: We need to show that we can make $\|y\|$ arbitrarily close to $\|x\|$ by making y 'close' enough to x, where 'close' is measured in terms of the infinity norm distance $d(x,y) = \|x-y\|_{\infty}$. Define u = x - y and write u in the canonical basis as $u = \sum_{i=1}^{n} \delta_i e_i$. Then:

$$\|u\| = \|\sum_{i=1}^n \delta_i e_i\| \leq \sum_{i=1}^n |\delta_i| \, \|e_i\| \leq \max |\delta_i| \sum_{i=1}^n \|e_i\|$$

Setting $M = \sum_{i=1}^n \|e_i\|$ we get

$$\|u\| \leq M \max |\delta_i| = M \|x - y\|_{\infty}$$

Let ϵ be given and take x, y such that $||x - y||_{\infty} \leq \frac{\epsilon}{M}$. Then, by using the second triangle inequality we obtain:

$$\|\|x\|-\|y\|\|\leq \|x-y\|\leq M\max\delta_i\leq Mrac{\epsilon}{M}=\epsilon.$$

This means that we can make ||y|| arbitrarily close to ||x|| by making y close enough to x in the sense of the defined metric. Therefore ||.|| is continuous.

№7 In \mathbb{R}^n (or \mathbb{C}^n) all norms are equivalent.

Solution: We will do it for $\phi_1 = \|.\|$ some norm, and $\phi_2 = \|.\|_{\infty}$ [and one can see that all other cases will follow from this one].

1. Need to show that for some α we have $||x|| \leq \alpha ||x||_{\infty}$. Express x in the canonical basis of \mathbb{R}^n as $x = \sum x_i e_i$ [look up canonical basis e_i from your csci2033 class.] Then

$$\|x\|=\|\sum x_ie_i\|\leq \sum |x_i|\|e_i\|\leq \max |x_i|\sum \|e_i\|=\|x\|_\infty lpha$$
 where $lpha=\sum \|e_i\|.$

2. We need to show that there is a β such that $\|x\| \geq \beta \|x\|_{\infty}$. Assume $x \neq 0$ and consider $u = x/\|x\|_{\infty}$. Note that u has infinity norm equal to one. Therefore it belongs to the closed and bounded set $S_{\infty} = \{v|\|v\|_{\infty} = 1\}$. Since norms are continuous (seen earlier), the minimum of the norm $\|u\|$ for all u's in S_{∞} is *reached*, i.e., there is a $u_0 \in S_{\infty}$ such that

$$\min_{u\in S_\infty}\|u\|=\|u_0\|.$$

Let us call eta this minimum value, i.e., $\|u_0\| = eta$. Note in passing that eta cannot be equal to zero otherwise $u_0 = 0$ which would contradict the fact that u_0 belongs to S_∞ [all vectors in S_∞ have infinity norm

equal to one.] The result follows because $u=x/\|x\|_{\infty}$, and so, remembering that $u=x/\|x\|_{\infty}$, we obtain

$$\left\| rac{x}{\|x\|_{\infty}}
ight\| \geq eta
ightarrow \|x\| \geq eta \|x\|_{\infty}$$

This completes the proof

Show that for any
$$x$$
: $\frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1$

Solution: For the right inequality, it is easy to see that $\|x\|_2 \leq \|x\|_1$ because $\sum_i x_i^2 \leq [\sum_i |x_i|]^2$

For the left inequality, we rely on Cauchy-Schwarz. If we call **1** the vector of all ones, then:

$$\|x\|_1 = \sum_i |x_i|.1 \leq \|x\|_2 \|One\|_2 = \sqrt{n} \|x\|_2 \|$$

 \bigtriangleup_9 Unit balls in \mathbb{R}^2 .

And Show that $ho(A) \leq \|A\|$ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u. Then

$$Au=\lambda u
ightarrowrac{\|Au\|}{\|u\|}=|\lambda|=
ho(A)$$

This implies that

$$\rho(A) \leq \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \|A\|$$

Solution: This was answered in the notes.

Given a function f(t) (e.g., e^t) how would you define f(A)?

[You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful.

In the simplest case where A is diagonalizable you can write $A = XDX^{-1}$ and then consider the k-term part of the Taylor series expression above:

$$egin{align} F_k &= f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 + \cdots + rac{f^{(k)}(0)}{k!}A^k \ &= X \left[f(0)I + rac{f'(0)}{1!}D + rac{f''(0)}{2!}D^2 + \cdots + rac{f^{(k)}(0)}{k!}D^k
ight] X^{-1} \ &\equiv X D_k X^{-1} \ \end{array}$$

where D_k is the matrix inside the brackets in line 2 of above equations. The i-th diagonal entry of D_k is of the form

$$f_k(\lambda_i) = f(0) + rac{f'(0)}{1!} \lambda_i + rac{f''(0)}{2!} \lambda_i^2 + \dots + rac{f^{(k)}(0)}{k!} \lambda_i^k,$$

which is just the k-term part of the Taylor series expansion of $f(\lambda_i)$. Each of these will converge to $f(\lambda_i)$. Now it is easy to complete the argument. If we call D_f the diagonal matrix whose ith diagonal entry is $f(\lambda_i)$ and F_A the matrix defined by

$$F_A = X D_f X^{-1},$$

then clearly

$$egin{array}{ll} \|F_k - F_A\|_2 &= \|X(D_k - D_f)X^{-1}\|_2 \leq \|X\|_2 \|X^{-1}\|_2 \|D_k - D_f\|_2 \ &\leq \|X\|_2 \|X^{-1}\|_2 \max_i |f_k(\pmb{\lambda}_i) - f(\pmb{\lambda}_i)| \end{array}$$

which converges to zero as k goes to infinity.

The eigenvalues of $A^H A$ and AA^H are real nonnegative.

Solution: Let us show it for A^HA [the other case is similar] If λ , u is an eigenpair of A^HA then $(A^HA)u = \lambda u$. Take inner products with u on both sides. Then:

$$oldsymbol{\lambda}(u,u) = ((A^HA)u,u) = (Au,Au) = \|Au\|^2$$

Therefore, $\lambda = \|Au\|^2/\|u\|^2$ which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result $(Ax, y) = (x, A^H y)$. 2) The singular values of A are the square roots of the eigenvalues of $A^H A$ if $m \geq n$ or those of the eigenvalues of AA^H if m < n. So there are always $\min(m, n)$ singular values. This is really just a preliminary definition as we need to refer to singular values often – but we will see singular values and the singular value decomposition in great detail later.]

<u>18</u> Prove that when $A = uv^T$ then $||A||_2 = ||u||_2 ||v||_2$.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form $A = uv^T$ where both u and v are in \mathbb{R}^n . From $Ax = \lambda x$ we get:

$$uv^Tx = \lambda x \rightarrow (v^Tx)u = \lambda x$$

Notice that we did this because $v^T x$ is a scalar. We have 2 cases.

Case 1: $v^T x = 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = 0$. So any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue $\lambda = 0$. (It can be shown that the eigenvalue 0 is of multiplicity n - 1).

Case 2: $v^T x \neq 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = v^T u$ and x = u. So u is an eigenvector of A associated with the eigenvalue $v^T x$.

In summary the matrix uv^T has only two eigenvalues: 0, and v^Tu .

Going back to the original question, we consider now $A = uv^T$ and we are interested in the 2-norm of A. We have

$$\|A\|_2^2 =
ho(A^TA) =
ho(vu^Tuv^T) = \|u\|_2^2
ho(vv^T) = \|u\|_2^2\|v\|_2^2.$$

The last relation comes from what was done above to determine the eigenvalues of vv^T . So in the end, $||A||_2 = ||u||_2 ||v||_2$.

Solution: Only the last part of the above answer changes (ρ is replaced by Tr) and you will find that actually the Frobenius norm of uv^T is again equal to $||u||_2||v||_2$.

Proof of Cauchy-Schwarz inequality: $|(x,y)|^2 \leq (x,x) \ (y,y).$

$$|(x,y)|^2 \leq (x,x) \ (y,y).$$

Proof: We begin by expanding $(x-\lambda y,x-\lambda y)$ using properties of inner products:

$$(x-\lambda y,x-\lambda y)=(x,x)-ar{\lambda}(x,y)-\lambda(y,x)+|\lambda|^2(y,y).$$

If y=0 then the inequality is trivially satisfied. Assume that $y\neq 0$ and take $\lambda = (x,y)/(y,y)$. Then, from the above equality, (x- $(\lambda y, x - \lambda y) \ge 0$ shows that

$$egin{align} 0 & \leq (x-\lambda y, x-\lambda y) \ = \ (x,x) - 2rac{|(x,y)|^2}{(y,y)} + rac{|(x,y)|^2}{(y,y)} \ & = \ (x,x) - rac{|(x,y)|^2}{(y,y)}, \end{split}$$

which yields the result.

```
PROOF OF EXPRESSION of \parallel A \parallel_1 = max_j \parallel A (:,j) \parallel_1
                                            = max of 1-norms of the columns of A
Definition:
  \| A \|_1 = \max_{\{\|x\|_1 = 1\}} \| Ax \|_1
  Let \eta = \max_{j} \| A(:,j)\|_{1} = \|A(:,j0)\|_{1}
                                                            where j_0 = index of col
                                                              that reaches the max
Part 1) \|A\|_1 \leq \eta
 let x any vector s.t. ||x||_1=1
 \| AX \|_1 = \| \sum X_j A(:,j) \|_1 \le \sum_j |X_j| \| A(:,j) \|_1
               \leq \sum_{j} |x_{j}| \max_{j} ||A(:,j)||_{1} = \sum_{j} |x_{j}| \eta
 \| Ax\|_1 \le \eta \sum_j |x_j| = \eta
==> ||A||<sub>1</sub> ≤ η
Part 2) \|A\|_1 \ge \eta
  Assume max reached for j0
  let x = e_{j0} = [0; 0; ..., 0; 1; 0 ....]
^- position j0
 A e_i = jth column of A - note that A e_{i0} = A(:,j_0)= j_0-th column of A
 for x = e_{j0} \rightarrow
 Then \| A \times \|_1 = \| A(:,j0) \|_1 = \eta
 For one particular x \parallel A x\parallel_1 = \eta \rightarrow so max \parallel Ax \parallel_1 over all x's with \parallel x \parallel_1 = 1 is \geq \eta
 \max_{x} \{x \mid ||x||_1 = 1 \} ||A x||_1 \ge \eta
==> \|A\|_1 \ge \eta
```

```
EXPRESSION FOR INFINITY NORM OF A = \max_i \| A(i,:) \|_1
______
NOTE: In the following \| \cdot \|_{-} is the infinity norm
To show \|A\|_{-} = \max \text{ of 1-norms of the *rows* of A}
Definition: \| A \|_{-} = \max_{\{\|x\|_{-} = 1\}} \| Ax \|_{-}
Let \eta = \max_{i} \| A(i,:)\|_{1} = \|A(i0,:)\|_{1}
                                                  where i0 = index of row
                                                  that reaches the max
Part 1) ||A||_{\perp} \leq \eta
 Let x any vector s.t. ||x||_{-} = 1
   (Ax)_i = \sum_j A(i,j) x_j \rightarrow
 |(AX)_i| \leq \sum_j |A(i,j)| |X_j| \rightarrow
            \leq \sum_{j} |A(i,j)| \max_{j} |x_{j}|
          \leq \sum_{j} |A(i,j)| = ||A(i,:)||_{1}
 take max over i:
 \| Ax \|_{-} \le \eta for all x with \| x \|_{-} = 1
  ===> \parallel A \parallel_ \leq \eta
Part 2) ||A||_{-} \ge \eta
  Assume max reached for i0
  let x_0 = vector of signs of the row A(i0,:)
           = [ \pm 1; \pm 1, \ldots, \pm 1]
  clearly \| x_0 \|_{-} = 1
 Then can show that
 \parallel A x_0 \parallel_{-} = \eta
 == similar argument as for \| \|_1 to complete proof
```
