✓ Non associativity in the presence of round-off.

Solution: This is done in a class demo and the diary should be posted. Here are the commands.

```
n = 10000;
a = randn(n, 1); b = randn(n, 1); c = randn(n, 1);
t = ((a+b)+c == a+(b+c));
sum(t)
```

Right-hand side in 3rd line returns 1 for each instance when the two numbers are the same.

△2 Find machine epsilon in matlab.

Solution:

```
u = 1;
for i=0:999
    fprintf(1,' i = %d , u = %e \n',i,u)
    if (1.0 + u == 1.0) break, end
```

$$u = u/2;$$

end

$$u = u * 2$$

Proof of Lemma: If $|\delta_i| \leq \underline{\mathrm{u}}$ and $n\underline{\mathrm{u}} < 1$ then

$$\Pi_{i=1}^n(1+\delta_i)=1+ heta_n \quad ext{where} \quad | heta_n| \leq rac{n \underline{\mathrm{u}}}{1-n \underline{\mathrm{u}}}$$

Solution:

The proof is by induction on n.

1) Basis of induction. When n=1 then the product reduces to $1+\delta_i$ and so we can take $\theta_n=\delta_n$ and we know that $|\delta_n|\leq \underline{\mathbf{u}}$ from the assumptions and so

$$|\theta_n| \le \underline{\mathrm{u}} \le \frac{\underline{\mathrm{u}}}{1 - \underline{\mathrm{u}}},$$

as desired.

2) Induction step. Assume now that the result as stated is true for n and consider a product with n+1 terms: $\Pi_{i=1}^{n+1}(1+\delta_i)$. We can write this as $(1+\delta_{n+1})\Pi_{i=1}^n(1+\delta_i)$ and from the induction hypothesis

we get:

$$\Pi_{i=1}^{n+1}(1+\delta_i)=(1+ heta_n)(1+\delta_{n+1})=1+ heta_n+\delta_{n+1}+ heta_n\delta_{n+1}$$

with θ_n satisfying the inequality $\theta_n \leq (n\underline{u})/(1-n\underline{u})$. We call θ_{n+1} the quantity $\theta_{n+1} = \theta_n + \delta_{n+1} + \theta_n \delta_{n+1}$, and we have

$$egin{aligned} | heta_{n+1}| &= | heta_n + \delta_{n+1} + heta_n \delta_{n+1}| \ &\leq rac{n \underline{\mathrm{u}}}{1 - n \underline{\mathrm{u}}} + \underline{\mathrm{u}} + rac{n \underline{\mathrm{u}}}{1 - n \underline{\mathrm{u}}} imes \underline{\mathrm{u}} \ &= rac{n \underline{\mathrm{u}} + \underline{\mathrm{u}} \left(1 - n \underline{\mathrm{u}}\right) + n \underline{\mathrm{u}}^2}{1 - n \underline{\mathrm{u}}} = rac{(n+1) \underline{\mathrm{u}}}{1 - n \underline{\mathrm{u}}} \ &\leq rac{(n+1) \underline{\mathrm{u}}}{1 - (n+1) \underline{\mathrm{u}}} \end{aligned}$$

This establishes the result with n replaced by n+1 as wanted and completes the proof.

Assume you use single precision for which you have $\underline{\mathbf{u}} = 2. \times 10^{-6}$. What is the largest n for which $n\underline{\mathbf{u}} \leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?

Solution: We need $n \leq 0.01/(2.0 \times 10^{-4})$ which gives $n \leq 5,000$. Hence, single precision is inadequate for computations involving long inner products.

∠6 What does the main result on inner products imply for the case

when y=x? [Contrast the relative accuracy you get in this case vs. the general case when $y\neq x$]

Solution: In this case we have

$$|fl(x^Tx) - (x^Tx)| \le \gamma_n x^Tx$$

which implies that we will always have a small relative error. Not true for the general case because the final result (forward form)

$$\left|fl(y^Tx)-(y^Tx)
ight|\leq \gamma_n|y|^T|x|$$

does not imply a small relative error which would mean $|fl(y^Tx)-(y^Tx)| \leq \epsilon |y^Tx|$ where ϵ is small. \Box

$$fl(x^Ty) = (x + \Delta x)^Ty$$
, with $|\Delta x| \leq \gamma_n |x|$

$$fl(x^Ty) \ = \ x^T(y+\Delta y), \quad ext{with} \quad |\Delta y| \le \gamma_n |y|$$

Solution: The main result we proved is that

$$fl(y^Tx) = \sum_{i=1}^n x_i y_i (1+ heta_i)$$
 where $| heta_i| \leq \gamma_n$

The first relation comes from just attaching each $(1+\theta_i)$ to x_i so x_i is replaced by $x_i+\theta_i x_i$... Similarly for the second relation.

(Continuation) Let A an $m \times n$ matrix, x an n-vector, and y = Ax. Show that there exist a matrix ΔA such

$$fl(y) = (A + \Delta A)x$$
, with $|\Delta A| \le \gamma_n |A|$

Solution: The result comes from applying the result on inner products to each entry y_i of y – which is the inner product of row i with y. We use the first of the two results above:

$$fl(y_i) = (a_{i,:} + \Delta a_{i,:})^T y$$
 with $|\Delta a_{i,:}| \leq \gamma_n |a_{i,:}|$

the result follows from expressing this in matrix form.

(Continuation) From the above derive a result about a column of the product of two matrices A and B. Does a similar result hold for the product AB as a whole?

Solution: We can have a result for each column since this is just a matrix-vector product. However this does not translate into a result for AB because the ΔA we get for each column will depend on the column. Specifically, for the j-th column of B you will have a certain matrix $(\Delta A)_j$ such that $fl(AB(:,j)) = (A+(\Delta A)_j)B(:,j)$ with certain conditions as set in previous exercise. However this $(\Delta A)_j$ is *NOT* the same matrix for each column. So you cannot

say
$$fl(A) = (A + \Delta A)B$$
, ...

Supplemental notes

The importance of floating point analysis cannot be overstated. There were many instances where poor implementation of algorithms failed and led to - on occasion - disastrous results. One of the best examples is the failed launch of the European Ariane rocket in 1996 [Ariane flight V88]. See the story in this wikipedia page

https://en.wikipedia.org/wiki/Ariane_flight_V88