Solution: This is obvious because for any matrix norm $||I|| = ||I^{-1}|| = 1$.

Solution: We have $\|AA^{-1}\|=\|I\|=1$ therefore $1=\|AA^{-1}\|\leq \|A\|\,\|A^{-1}\|=\kappa(A)$

Show that if $\|E\|/\|A\| \leq \delta$ and $\|e_b\|/\|b\| \leq \delta$ then

$$rac{\|x-y\|}{\|x\|} \leq rac{2\delta\kappa(A)}{1-\delta\kappa(A)}$$

Solution: From the main theorem (theorem 1) we have

$$rac{\|x-y\|}{\|x\|} \leq rac{\|A^{-1}\| \, \|A\|}{1-\|A^{-1}\| \, \|E\|} \left(rac{\|E\|}{\|A\|} + rac{\|e_b\|}{\|b\|}
ight)$$

If $||E|| \leq \delta$ and $||e_b||/||b|| \leq \delta$ then:

$$egin{aligned} & rac{\|x-y\|}{\|x\|} \leq & rac{\kappa(A) imes 2\delta}{1-\|A^{-1}\| \ \|E\|} \ & \leq & rac{2\delta\kappa(A)}{1-\|A^{-1}\| \|A\| imes (\|E\|/\|A\|)} \ & \leq & rac{2\delta\kappa(A)}{1-\delta\kappa(A)}. \end{aligned}$$

Show that $\frac{\|x-\tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}$.

Solution: We start with noting that $A(x-\tilde{x})=b-A\tilde{x}=r$. So:

$$\|r\| \leq \|A\| \|x - ilde{x}\| o rac{\|r\|}{\|b\|} \leq \|A\| rac{\|x - ilde{x}\|}{\|b\|}$$

Next from $\|x\| = \|A^{-1}b\| \le \|A^{-1}\| \|b\|$ we get $\|b\| \ge \|x\|/\|A^{-1}\|$ and so

$$rac{\|r\|}{\|b\|} \leq \|A\| rac{\|x - ilde{x}\|}{\|x\|/\|A^{-1}\|} = \kappa(A) rac{\|x - ilde{x}\|}{\|x\|}$$

which yields the result after dividing the 2 sides by $\kappa(A)$.

More on normwise backward error

igwedge We solve Ax=b and find an approximate solution y

Question: Find smallest perturbation to apply to A, b so that *exact* solution of perturbed system is y

ightharpoonup We now consider the situation where only b or A are perturbed (not both)

Suppose we model entire perturbation in RHS *b*.

- Let r=b-Ay be the residual. Then y satisfies $Ay=b+\Delta b$ with $\Delta b=-r$ exactly.
- The relative perturbation to the RHS is $\frac{||r||}{||b||}$.

Suppose we model entire perturbation in matrix A.

- lacksquare Then y satisfies $\left(A+rac{ry^T}{y^Ty}
 ight)y=b$
- The relative perturbation to the matrix is

$$\left\|rac{ry^T}{y^Ty}
ight\|_2/\|A\|_2=rac{\|r\|_2}{\|A\|\|y\|_2}$$

Proof of Theorem 3

Let $D \equiv \|E\|\|y\| + \|e_b\|$ and $\eta \equiv \eta_{E,e_b}(y)$. The theorem states that $\eta = \|r\|/D$ (recall that r = b - Ay). Proof in 2 steps.

First: Any ΔA , Δb pair satisfying (1) is such that $\epsilon \geq ||r||/D$. Indeed from (1) we have:

$$egin{aligned} Ay + \Delta Ay &= b + \Delta b
ightarrow r = \Delta Ay - \Delta b
ightarrow \ & \|r\| \leq \|\Delta A\| \|y\| + \|\Delta b\| \ & \leq \epsilon (\|E\| \|y\| + \|e_b\|)
ightarrow \ & \epsilon \geq rac{\|r\|}{D} \end{aligned}$$

Second: We need to show an instance where the minimum value of ||r||/D is reached. Take the pair $\Delta A, \Delta b$:

$$\Delta A = lpha r z^T; \ \Delta b = eta r$$
 with $lpha = rac{\|E\| \|y\|}{D}; \ eta = -rac{\|e_b\|}{D}$

6-4

The vector z depends on the norm used - for the 2-norm: $z=y/\|y\|^2$. Here: Proof only for 2-norm

Next, we need to verify that first part of (1) is satisfied:

$$egin{align} (A+\Delta A)y &= Ay + lpha r rac{y^T}{\|y\|^2}y = b-r+lpha r \ &= b-(1-lpha)r \ &= b-\left(1-rac{\|E\|\|y\|}{\|E\|\|y\|+\|e_b\|}
ight)r \ &= b-rac{\|e_b\|}{D}r = b+eta r \quad
ightarrow \ (A+\Delta A)y &= b+\Delta b \quad \leftarrow ext{The desired result} \ \end{cases}$$

Finally: Must now verify that $\|\Delta A\|=\eta\|E\|$ and $\|\Delta b\|=\eta\|e_b\|$. Exercise: Show that $\|uv^T\|_2=\|u\|_2\|v\|_2$

$$egin{align} \|\Delta A\| &= rac{|lpha|}{\|y\|^2} \|ry^T\| = rac{\|E\| \|y\|}{D} rac{\|r\| \|y\|}{\|y\|^2} = \eta \|E\| \ \|\Delta b\| &= |eta| \|r\| = rac{\|e_b\|}{D} \|r\| = \eta \|e_b\| & oldsymbol{QED} \ \end{aligned}$$