Prove that Gram-Schmidt can be completed iff the x_i 's are linearly independent.

Solution:

We will show that Gram-Schmidt breaks down iff the x_i 's are linearly dependent.

The only way in which GS can break down is if $r_{jj} = \|\hat{q}\|_2$ in line 7 is zero.

The main observation is that the vector \hat{q} at the end of the loop starting in line 4 (ending in line 6) is a linear combination of the x_i 's for $i = 1, \dots, j$. [simple proof by induction – omitted.]

Cost of Gram-Schmidt?

Solution: Step j of the algorithm costs : $(j-1) \times 2m$ operations for line 3, $+(j-1) \times 2m$ operations for loop in line 4+3m operations in Lines 7 and 8 together. Total for step $j=c_j=(4j-1)m$. Total over the n columns = $T(n)=(2n^2+n)m\approx 2n^2m$.

Note: this is linear in \boldsymbol{m} (number of rows) and quadratic in \boldsymbol{n} (number
of columns).
What is the cost of solving a linear system with the QR factor-
ization?
Solution: According to the previous question we have a cost of $2n^3$
for the factorization (since $m=n$), to which we need to add the cost
of solving a triangular solve $O(n^2)$ and the cost for computing $oldsymbol{Q}^T oldsymbol{b}$
which is again $O(n^2)$. In the end the cost is dominated by the QR
factorization which is $2n^3$. This is 3 times more expensive than GE.

Supplementatal notes: Examples

➤ Data fitting

Example:

$oldsymbol{t_i}$:	-1	-1/2	0	1/2	1
eta_i :	0.1	0.3	0.3	0.2	0.0

1) Approximations by polynomials of degree one:

$$ightharpoonup \phi_1(t) = 1, \phi_2(t) = t.$$

$$egin{aligned} \phi_1(t) &= 1, \phi_2(t) = t. \ &= egin{pmatrix} 1.0 & -1.0 \ 1.0 & -0.5 \ 1.0 & 0.5 \ 1.0 & 1.0 \end{pmatrix} & F^T F = egin{pmatrix} 5.0 & 0 \ 0 & 2.5 \end{pmatrix} \ F^T b = egin{pmatrix} 0.9 \ -0.15 \end{pmatrix} \end{aligned}$$

 \triangleright Best approximation is ϕ (

$$\phi(t) = 0.18 - 0.06t$$

2) Approximation by polynomials of degree 2:

$$ightharpoonup \phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2.$$

➤ Best polynomial found:

$$0.30857... - 0.06 \times t - 0.25715... \times t^2$$

