THE SINGULAR VALUE DECOMPOSITION

* Orthogonal subspaces
* The Singular Value Decomposition

* Properties of the SVD. Relations to eigenvalue problems



The Singular Value Decomposition (SVD)

Theorem I For any matrix A € R™*"™ there exist unitary matrices U € R™*™
and V&€ R"*™ such that
A=Uxv?’
where X is a diagonal matrix with entries o;; > 0.

011 > 022 > +++0pp > 0 With p = min(n, m)

» The o;;’s are the singular values. Notation change o;; — o

Proof: |Let oy = ||A||2 = max, ;,=1 ||Ax||2. There exists a pair of unit vectors

v1, w1 Such that
A'Ul = oOo1uUq
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» Complete v; into an orthonormal basis of R"

V = [vy, Vo] = n X mn unitary

» Complete w4 into an orthonormal basis of R™

U = [u, U] = m X m unitary

#1| Define U, V as single Householder reflectors.

» Then, it is easy to show that
T T

L o1 W T L o1 W —
AV—U><<O B) —>UAV—<O B>_A1
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» Observe that

4 (%)

» This shows that w must be zero [why?]

> o2 + |lwll® = /oF + [[wlf?

2

()

» Complete the proof by an induction argument. ]

2
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O
O
Case 1: | A = U 2
O

Case 2: I Q vT
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The “thin” SVD

» Consider Case-1. It can be rewritten as

A = [UUy) (2(3)1> vT

Which gives:
A=U>X, VT

where U; is m X n (same shape as A),and Xy and V aren X n

» Referred to as the “thin” SVD. Important in practice.

2| How can you obtain the thin SVD from the QR factorization of A and the SVD

of an n X m matrix?




A few properties. |Assume that

0'120'22---20r>0andar+1=---=ap20

Then:

e rank(A) = r = number of nonzero singular values.

e Ran(A) = span{uy, us,...,u,}
o Null(AT) = span{wu, 11, Uri2,.« s Um}
e Ran(AT) = span{v, v, ..., v, }

e Null(A) = span{v, 11, Vpi2y...,Vn}
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Properties of the SVD (continued)

e The matrix A admits the SVD expansion: A= Z Uiuz"”f
i=1

e |A||2 = o1 = largest singular value

o |Allr = (X5, 02)"

e When A is an n X m nonsingular matrix then ||A~!|| = 1/04,

k
Theorem I [Eckart-Young-Mirsky] Let k < r and A, = ) oju;v; then

=1

in ||A—Bl2=|A— Agllz =
ramin | lz = | ell2 = Tt
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Proof: First: |A — B||2 > o1, for any rank-k matrix B.
Consider X = span{vy, va, -+ ,vVg11}. Note:
dim(Null(B)) =n — k — Null(B) N X # {0}
[Why?]
Letxg € Null(B) N X, x¢ # 0. Write ¢y = Vy. Then
I(A — B)aollz = [|Azoll: = [USVIVy|» = [ Syl

But |[Xyll2 > ok+1llxoll2 (Show this). — ||A — Bl|2 2> o1

Second: take B = Aj. Achieves the min.
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Right and Left Singular vectors: |
A’Uz' = oOo;u;

g

1N

~
£
|

» v;’s = right singular vectors;
» u;’s = left singular vectors.

» Consequence A’ Av; = ov; and AATw; = olu;
» Right singular vectors (v;’s) are eigenvectors of AT A
» Left singular vectors (u;'s) are eigenvectors of AAT

» Possible to get the SVD from eigenvectors of AAT and AT A — but: difficulties
due to non-uniqueness of the SVD
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Define the r» X r matrix

3, = diag(o1y...,0)

» Let A € R™*™ and consider ATA (€ R"*™):

0 0

J/

2
ATA=vYXIxVvT 5 ATA=V (21 0) vt

\
~

nxXn

» This gives the spectral decomposition of AT A.
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» Similarly, U gives the eigenvectors of AAT.

Important: |

ATA =VD, VT and AAT = UD,U" give the SVD factors U, V up to signs!
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