
THE SINGULAR VALUE DECOMPOSITION

• Orthogonal subspaces

• The Singular Value Decomposition

• Properties of the SVD. Relations to eigenvalue problems

10-1



The Singular Value Decomposition (SVD)

Theorem For any matrix A ∈ Rm×n there exist unitary matrices U ∈ Rm×m

and V ∈ Rn×n such that
A = UΣV T

where Σ is a diagonal matrix with entries σii ≥ 0.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(n,m)

ä The σii’s are the singular values. Notation change σii −→ σi

Proof: Let σ1 = ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2. There exists a pair of unit vectors
v1, u1 such that

Av1 = σ1u1
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ä Complete v1 into an orthonormal basis of Rn

V ≡ [v1, V2] = n× n unitary

ä Complete u1 into an orthonormal basis of Rm

U ≡ [u1, U2] = m×m unitary

-1 Define U, V as single Householder reflectors.

ä Then, it is easy to show that

AV = U ×
(
σ1 w

T

0 B

)
→ UTAV =

(
σ1 w

T

0 B

)
≡ A1
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ä Observe that∥∥∥∥A1

(
σ1

w

)∥∥∥∥
2

≥ σ2
1 + ‖w‖2 =

√
σ2

1 + ‖w‖2

∥∥∥∥(σ1

w

)∥∥∥∥
2

ä This shows that w must be zero [why?]

ä Complete the proof by an induction argument.
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Case 1: =

V

UA

T

Σ

Case 2:

A U Σ

V

=

T
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The “thin” SVD

ä Consider Case-1. It can be rewritten as

A = [U1U2]

(
Σ1

0

)
V T

Which gives:

A = U1Σ1 V
T

where U1 is m× n (same shape as A), and Σ1 and V are n× n

ä Referred to as the “thin” SVD. Important in practice.

-2 How can you obtain the thin SVD from the QR factorization of A and the SVD
of an n× n matrix?
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A few properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}

• Null(AT ) = span{ur+1, ur+2, . . . , um}

• Ran(AT ) = span{v1, v2, . . . , vr}

• Null(A) = span{vr+1, vr+2, . . . , vn}
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Properties of the SVD (continued)

• The matrix A admits the SVD expansion: A =
r∑
i=1

σiuiv
T
i

• ‖A‖2 = σ1 = largest singular value

• ‖A‖F =
(∑r

i=1 σ
2
i

)1/2
• When A is an n× n nonsingular matrix then ‖A−1‖2 = 1/σn

Theorem [Eckart-Young-Mirsky] Let k ≤ r and Ak =
k∑
i=1

σiuiv
T
i then

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1
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Proof: First: ‖A−B‖2 ≥ σk+1, for any rank-k matrix B.

Consider X = span{v1, v2, · · · , vk+1}. Note:

dim(Null(B)) = n− k→ Null(B) ∩ X 6= {0}

[Why?]

Let x0 ∈ Null(B) ∩ X , x0 6= 0. Write x0 = V y. Then

‖(A−B)x0‖2 = ‖Ax0‖2 = ‖UΣV TV y‖2 = ‖Σy‖2

But ‖Σy‖2 ≥ σk+1‖x0‖2 (Show this).→ ‖A−B‖2 ≥ σk+1

Second: take B = Ak. Achieves the min.
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Right and Left Singular vectors:

ä vi’s = right singular vectors;
ä ui’s = left singular vectors.

Avi = σiui

ATuj = σjvj

ä Consequence ATAvi = σ2
i vi and AATui = σ2

iui

ä Right singular vectors (vi’s) are eigenvectors of ATA

ä Left singular vectors (ui’s) are eigenvectors of AAT

ä Possible to get the SVD from eigenvectors of AAT and ATA – but: difficulties
due to non-uniqueness of the SVD
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Define the r × r matrix

Σ1 = diag(σ1, . . . , σr)

ä Let A ∈ Rm×n and consider ATA (∈ Rn×n):

ATA = V ΣTΣV T → ATA = V

(
Σ2

1 0

0 0

)
︸ ︷︷ ︸

n×n

V T

ä This gives the spectral decomposition of ATA.
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ä Similarly, U gives the eigenvectors of AAT .

AAT = U

(
Σ2

1 0

0 0

)
︸ ︷︷ ︸
m×m

UT

Important:

ATA = V D1V
T and AAT = UD2U

T give the SVD factors U, V up to signs!
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