THE SINGULAR VALUE DECOMPOSITION

- Orthogonal subspaces
- The Singular Value Decomposition
- Properties of the SVD. Relations to eigenvalue problems

ightharpoonup Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$V \equiv [v_1, V_2] = n imes n$$
 unitary

ightharpoonup Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = m imes m$$
 unitary

Define U, V as single Householder reflectors.

➤ Then, it is easy to show that

$$AV = U imes egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} \ o \ U^T A V = egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} \equiv A_1$$

The Singular Value Decomposition (SVD)

Theorem For any matrix $A\in\mathbb{R}^{m imes n}$ there exist unitary matrices $U\in\mathbb{R}^{m imes m}$ and $V\in\mathbb{R}^{n imes n}$ such that

$$A = U\Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

ightharpoonup The σ_{ii} 's are the singular values. Notation change $\sigma_{ii} \longrightarrow \sigma_i$

Proof: Let $\sigma_1=\|A\|_2=\max_{x,\|x\|_2=1}\|Ax\|_2$. There exists a pair of unit vectors v_1,u_1 such that

$$Av_1 = \sigma_1 u_1$$

GvL 2.4, 5.4-5 – SVD

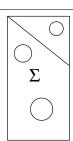
> Observe that

$$\left\|A_1inom{\sigma_1}{w}
ight\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\|inom{\sigma_1}{w}
ight\|_2$$

- ➤ This shows that w must be zero [why?]
- ➤ Complete the proof by an induction argument.

A

U

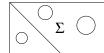


 $\mathbf{v}^{\mathbf{T}}$

Case 2:

A

U



 $\mathbf{V}^{\mathbf{T}}$

GvL 2.4, 5.4-5 - SVD

GvL 2.4, 5.4-5 - SVD

A few properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- ullet Null $(A^T)= ext{span}\{u_{r+1},u_{r+2},\ldots,u_m\}$
- $\operatorname{Ran}(A^T) = \operatorname{span}\{v_1, v_2, \dots, v_r\}$
- Null(A) = span $\{v_{r+1}, v_{r+2}, \ldots, v_n\}$

The "thin" SVD

Consider Case-1. It can be rewritten as

$$oldsymbol{A} = \left[oldsymbol{U}_1 oldsymbol{U}_2
ight] egin{pmatrix} \Sigma_1 \ 0 \end{pmatrix} \, oldsymbol{V}^T$$

Which gives:

$$A = U_1 \Sigma_1 \ V^T$$

where U_1 is $m \times n$ (same shape as A), and Σ_1 and V are $n \times n$

➤ Referred to as the "thin" SVD. Important in practice.

 \blacktriangle 2 How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

GvL 2.4, 5.4-5 - SVD

Properties of the SVD (continued)

• The matrix A admits the SVD expansion:

$$A = \sum_{i=1}^r \sigma_i u_i v_i^T$$

- $||A||_2 = \sigma_1$ = largest singular value
- $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2\right)^{1/2}$
- ullet When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2=1/\sigma_n$

Theorem

| [Eckart-Young-Mirsky] Let $k \leq r$ and $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ then

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$$

GvL 2.4, 5.4-5 - SVD 10-8

Proof: First: $||A - B||_2 \ge \sigma_{k+1}$, for any rank-k matrix B.

Consider $\mathcal{X} = \operatorname{span}\{v_1, v_2, \cdots, v_{k+1}\}$. Note:

$$dim(Null(B)) = n - k \rightarrow Null(B) \cap \mathcal{X} \neq \{0\}$$

[Why?]

Let $x_0 \in \ Null(B) \cap \mathcal{X}, \ x_0 \neq 0.$ Write $x_0 = Vy$. Then

$$\|(A-B)x_0\|_2 = \|Ax_0\|_2 = \|U\Sigma V^TVy\|_2 = \|\Sigma y\|_2$$

But $\|\Sigma y\|_2 \geq \sigma_{k+1} \|x_0\|_2$ (Show this). $\to \|A-B\|_2 \geq \sigma_{k+1}$

Second: take $B = A_k$. Achieves the min.

-9 ______ GvL 2.4, 5.4-5 – SVD

Define the $r \times r$ matrix

$$\Sigma_1 = ext{diag}(\sigma_1, \dots, \sigma_r)$$

ightharpoonup Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A \ (\in \mathbb{R}^{n \times n})$:

$$A^TA = V\Sigma^T\Sigma V^T
ightarrow A^TA = V\underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{n imes n} V^T$$

 \triangleright This gives the spectral decomposition of A^TA .

Right and Left Singular vectors:

- $\triangleright v_i$'s = right singular vectors;
- $\triangleright u_i$'s = left singular vectors.

$$egin{aligned} Av_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{aligned}$$

- igspace Consequence $A^TAv_i=\sigma_i^2v_i$ and $AA^Tu_i=\sigma_i^2u_i$
- ightharpoonup Right singular vectors (v_i 's) are eigenvectors of A^TA
- \triangleright Left singular vectors (u_i 's) are eigenvectors of AA^T
- ightharpoonup Possible to get the SVD from eigenvectors of AA^T and A^TA but: difficulties due to non-uniqueness of the SVD

-10 _____ GvL 2.4, 5.4-5 – SVD

 \triangleright Similarly, U gives the eigenvectors of AA^T .

$$AA^T = U \underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{m imes m} U^T$$

Important:

 $A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD factors U,V up to signs!