THE SINGULAR VALUE DECOMPOSITION

* Orthogonal subspaces
* The Singular Value Decomposition

 Properties of the SVD. Relations to eigenvalue problems

The Singular Value Decomposition (SVD)

Theorem | For any matrix A € R™*" there exist unitary matrices U € R™*™
and V. € R™*" such that

A=UxvT

where X is a diagonal matrix with entries o;; > 0.
o1 > O3 >+ -+ Opp > 0 With p = min(n, m)

» The o;;’s are the singular values. Notation change o;; — o3

Proof: |Let o1 = ||Al|2 = max, |4),=1 ||Az||2. There exists a pair of unit vectors
v1, uq Ssuch that

A’Ul = o1Uuq
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» Complete v; into an orthonormal basis of R™

V = [v1, Vo] = n X n unitary

» Complete u; into an orthonormal basis of R™

U = [u1, Uy] = m X m unitary

Define U, V as single Householder reflectors.

» Then, it is easy to show that
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» QObserve that
o1
> o} + |w|* = \/oi + |lw]||? < )H
2 w 2

(%)
w
» Complete the proof by an induction argument. [ |

» This shows that w must be zero [why?]
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Case 1: | A = U

O
O
T
O

Case 2: | O

The “thin” SVD

» Consider Case-1. It can be rewritten as

A = [UUy) (E(J)l> vT

Which gives:
A=U3x, VT

where U; is m X n (same shape as A),and ¥, and V aren X n
» Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of A and the SVD
of an n X m matrix?
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A few properties. | Assume that Properties of the SVD (continued)
T
> > 000 > = ... = = . . .
o1 =022 = @ > WEE S = e The matrix A admits the SVD expansion: A= Z"i”ivz‘T
i=1

Then:

e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{uy, ug,...,u,}

e Null(AT) = span{w, 1, Uri2y ...y Um}

e Ran(AT) = span{vy,va,...,v,}

e Null(A) = span{v, 1, Vyri2y...,Vn}
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e ||A||2 = o4 = largest singular value

o lAllr = (X5, 02)"?

e When A is an n X n nonsingular matrix then ||[A7Y||, = 1/,

k
Theorem | [Eckart-Young-Mirsky] Let & < r and Ay = Z a,-uivf then

=1

ranrlf:l(lB%:k ” ”2 ” k”2 Ok+1
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Proof: First: ||A — B||2 > o1, for any rank-k matrix B.
Consider X = span{vq, va,+++ , Vg+1}. Note:
dim(Null(B)) =n — k — Null(B) N X # {0}
[Why?]
Letxg € Null(B) N X, xy # 0. Write £y = V'y. Then
(A = B)zo|l2 = ||Azo|l2 = [USVIVyY|2 = || Syl

But |2yl > owtall@oll2 (Show this). — ||A — Bl|z > ok

Second: take B = Aj,. Achieves the min. |:|
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Right and Left Singular vectors:

A’Ui = O;U;

. . Wen o = ratbe
» v;’s = right singular vectors; Auj = ojv;

» u;’s = left singular vectors.

» Consequence ATAv; = o?v; and AATw; = olu;
» Right singular vectors (v;’s) are eigenvectors of AT A
» Left singular vectors (u;’s) are eigenvectors of AAT

» Possible to get the SVD from eigenvectors of AAT and AT A — but: difficulties
due to non-uniqueness of the SVD
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Define the » X r matrix

3, = diag(o1y ..., 07)

> Let A € R™*™ and consider ATA (€ R"*"™):
2
ATA=VETSVT o ATA=V (21 0) VT

00

» This gives the spectral decomposition of AT A.
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» Similarly, U gives the eigenvectors of AAT.

Important:

ATA =V D, VT and AAT = UD,UT give the SVD factors U, V' up to signs!
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