THE SINGULAR VALUE DECOMPOSITION (Cont.)

- The Pseudo-inverse
- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank

Pseudo-inverse of an arbitrary matrix

 \blacktriangleright Let $A = U\Sigma V^T$ which we rewrite as

$$oldsymbol{A} = egin{pmatrix} oldsymbol{U}_1 & oldsymbol{U}_2 \end{pmatrix} egin{pmatrix} oldsymbol{\Sigma}_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} oldsymbol{V}_1^T \ oldsymbol{V}_2^T \end{pmatrix} = oldsymbol{U}_1 oldsymbol{\Sigma}_1 oldsymbol{V}_1^T \end{pmatrix}$$

➤ Then the pseudo inverse of *A* is:

$$A^\dagger = V_1 \Sigma_1^{-1} U_1^T = \sum_{j=1}^r rac{1}{\sigma_j} v_j u_j^T$$

- The pseudo-inverse of A is the mapping from a vector b to the (unique) Minumum Norm solution of the LS problem: $\min_x ||Ax b||_2^2$ (to be shown)
- ightharpoonup In the full-rank overdetermined case, the normal equations yield $x=\underbrace{(A^TA)^{-1}A^T}_{A^\dagger}b$

Least-squares problem via the SVD

Problem: $\min_{x} \|b - Ax\|_2$ in general case.

- > We want to:
- Find *all* possible least-squares solutions.
- Also find the one with min. 2-norm.
- > SVD of A will play instrumental role in expressing solution

➤ Write SVD of *A* as:

$$A = egin{pmatrix} U_1 & U_2 \end{pmatrix} egin{pmatrix} \Sigma_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} V_1^T \ V_2^T \end{pmatrix} = \sum_{i=1}^r oldsymbol{\sigma}_i v_i u_i^T \end{pmatrix}$$

1) Express
$$x$$
 in V basis : $x = Vy = [V_1,\ V_2] \begin{pmatrix} y_1 \ y_2 \end{pmatrix}$

2) Then left multiply by $oldsymbol{U}^T$ to get

$$\|Ax-b\|_2^2 = \left\|egin{pmatrix} \Sigma_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} y_1 \ y_2 \end{pmatrix} - egin{pmatrix} U_1^T b \ U_2^T b \end{pmatrix}
ight\|_2^2$$

3) Find all possible solutions in terms of $y = [y_1; y_2]$

What are **all** least-squares solutions to the above system? Among these which one has minimum norm?

Answer: From above, must have $y_1 = \Sigma_1^{-1} U_1^T b$ and $y_2 =$ anything (free).

Recall that:
$$x=[V_1,V_2]egin{pmatrix} y_1 \ y_2 \end{pmatrix}=V_1y_1+V_2y_2 \ =V_1\Sigma_1^{-1}U_1^Tb+V_2y_2 \ =A^\dagger b+V_2y_2 \end{bmatrix}$$

- $ightharpoonup \operatorname{\mathsf{Note}} \colon A^\dagger b \ \in \ \operatorname{\mathsf{Ran}}(A^T) \ \operatorname{\mathsf{and}} \ V_2 y_2 \ \in \ \operatorname{\mathsf{Null}}(A).$
- ➤ Therefore: least-squares solutions are all of the form:

$$A^\dagger b + w$$
 where $w \in \operatorname{Null}(A)$.

ightharpoonup Smallest norm when $y_2=0$, i.e., when w=0.

ightharpoonup Minimum norm solution to $\min_x \|Ax-b\|_2^2$ satisfies $\Sigma_1 y_1 = U_1^T b$, $y_2 = 0$.

$$x_{LS} = V_1 \Sigma_1^{-1} U_1^T b = A^\dagger b$$

- Show that $A^{\dagger}A$ is an orthogonal projector. What are its range and null-space?
- \triangle_4 Same questions for AA^{\dagger} .

Moore-Penrose Inverse

The pseudo-inverse of A is given by

$$A^\dagger = V egin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T = \sum_{i=1}^r rac{v_i u_i^T}{\sigma_i} \, .$$

Moore-Penrose conditions:

The pseudo inverse X of a matrix is uniquely determined by these four conditions:

- (1) AXA = A (2) XAX = X (3) $(AX)^H = AX$ (4) $(XA)^H = XA$
- \blacktriangleright In the full-rank overdetermined case, $A^{\dagger}=(A^TA)^{-1}A^T$

Least-squares problems and the SVD

➤ The SVD can give much information on solutions of overdetermined and underdetermined linear systems.

Let A be an m imes n matrix and $A = U \Sigma V^T$ its SVD with $r = \mathrm{rank}(A)$, $V = [v_1, \ldots, v_n]$ $U = [u_1, \ldots, u_m]$. Then

$$x_{LS} = \sum_{i=1}^r rac{u_i^T b}{\sigma_i} \, v_i$$

minimizes $||b-Ax||_2$ and has the smallest 2-norm among all possible minimizers. In addition,

$$ho_{LS} \equiv \|b - Ax_{LS}\|_2 = \|z\|_2$$
 with $z = [u_{r+1}, \dots, u_m]^T b$

Least-squares problems and pseudo-inverses

> A restatement of the first part of the previous result:

Consider the general linear least-squares problem

$$\min_{x \in S} \|x\|_2, \quad S = \{x \in \mathbb{R}^n \mid \|b - Ax\|_2 \min\}.$$

This problem always has a unique solution given by

$$x = A^{\dagger}b$$

$$A = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{pmatrix}$$

- Compute the thin SVD of A
- Find the matrix **B** of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of A?
- What is the pseudo-inverse of B?
- ullet Find the vector x of smallest norm which minimizes $\|b-Ax\|_2$ with $b=(1,1)^T$
- ullet Find the vector x of smallest norm which minimizes $\|b-Bx\|_2$ with $b=(1,1)^T$

Ill-conditioned systems and the SVD

- ightharpoonup Let A be m imes m and $A=U\Sigma V^T$ its SVD
- lacksquare Solution of Ax=b is $x=A^{-1}b=\sum_{i=1}^m rac{u_i^Tb}{\sigma_i}\,v_i$
- ightharpoonup When A is very ill-conditioned, it has many small singular values. The division by these small σ_i 's will amplify any noise in the data. If $\tilde{b}=b+\epsilon$ then

$$A^{-1} ilde{b} = \sum_{i=1}^m rac{u_i^T b}{\sigma_i} \, v_i + \sum_{i=1}^m rac{u_i^T \epsilon}{\sigma_i} \, v_i$$

Result: solution could be completely meaningless.

Remedy: SVD regularization

Truncate the SVD by only keeping the $\sigma_i's$ that are $\geq \tau$, where τ is a threshold

➤ Gives the Truncated SVD solution (TSVD solution:)

$$x_{TSVD} = \sum_{oldsymbol{\sigma}_i \geq_{oldsymbol{ au}}} rac{u_i^T b}{oldsymbol{\sigma}_i} \, v_i \, .$$

Many applications [e.g., Image and signal processing,..]

Numerical rank and the SVD

- ightharpoonup Assuming the original matrix A is exactly of rank k the computed SVD of A will be the SVD of a nearby matrix A+E Can show: $|\hat{\sigma}_i \sigma_i| \leq \alpha \ \sigma_1 \underline{\mathbf{u}}$
- ightharpoonup Result: zero singular values will yield small computed singular values and r larger sing. values.
- \triangleright Reverse problem: *numerical rank* The ϵ -rank of A:

$$r_{\epsilon} = \min\{rank(B): B \in \mathbb{R}^{m imes n}, \|A-B\|_2 \leq \epsilon\},$$

- Show that r_{ϵ} equals the number sing. values that are $>\epsilon$
- Show: r_{ϵ} equals the number of columns of A that are linearly independent for any perturbation of A with norm $\leq \epsilon$.
- \triangleright Practical problem : How to set ϵ ?

GvL 2.4, 5.4-5 – SVD1

Pseudo inverses of full-rank matrices

Case 1: $m \geq n$ Then $A^\dagger = (A^TA)^{-1}A^T$

ightharpoonup Thin SVD is $A=U_1\Sigma_1V_1^T$ and V_1,Σ_1 are $n\times n$. Then:

$$(A^TA)^{-1}A^T = (V_1\Sigma_1^2V_1^T)^{-1}V_1\Sigma_1U_1^T \ = V_1\Sigma_1^{-2}V_1^TV_1\Sigma_1U_1^T \ = V_1\Sigma_1^{-1}U_1^T \ = A^\dagger$$

Example: Pseudo-inverse of $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ is?

$$egin{pmatrix} 0 & 1 \ 1 & 2 \ 2 & -1 \ 0 & 1 \end{pmatrix}$$
 is?

Case 2:
$$m < n$$
 Then $A^\dagger = A^T (AA^T)^{-1}$

ightharpoonup Thin SVD is $A=U_1\Sigma_1V_1^T$. Now U_1,Σ_1 are $m\times m$ and:

$$egin{aligned} A^T(AA^T)^{-1} &= V_1 \Sigma_1 U_1^T [U_1 \Sigma_1^2 U_1^T]^{-1} \ &= V_1 \Sigma_1 U_1^T U_1 \Sigma_1^{-2} U_1^T \ &= V_1 \Sigma_1 \Sigma_1^{-2} U_1^T \ &= V_1 \Sigma_1^{-1} U_1^T \ &= A^\dagger \end{aligned}$$

Example: Pseudo-inverse of $\begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1 \end{pmatrix}$ is?

Mnemonic: The pseudo inverse of A is A^T completed by the inverse of the smaller of $(A^TA)^{-1}$ or $(AA^T)^{-1}$ where it fits (i.e., left or right)