THE SINGULAR VALUE DECOMPOSITION (Cont.)

e The Pseudo-inverse
e Use of SVD for least-squares problems
e Application to regularization

e Numerical rank



Pseudo-inverse of an arbitrary matrix

» Let A = UX VT which we rewrite as
>, 0\ (VT
A= (U Uy) <01 0> <V2T> = U, VY

_ — 1
» Then the pseudo inverse of A is: At = ViU = Z ;vju;—,”
j=17

» The pseudo-inverse of A is the mapping from a vector b to the (unique) Minumum

Norm solution of the LS problem: min,, || Az — b||5 — (to be shown)

> In the full-rank overdetermined case, the normal equations yieldz = (AT A)~' A" b
Af
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Least-squares problem via the SVD

Problem: min, ||b — Ax||2 in general case.
» We want to:
e Find *all* possible least-squares solutions.
e Also find the one with min. 2-norm.

» SVD of A will play instrumental role in expressing solution

>, 0\ (VT d
» Write SVD of A as: A = (U1 Uz) < 01 O> <V1T> = Z oy
2 i=1
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1) Express x in V basis : « = Vy = [V, V3] <z1>
2

2) Then left multiply by U7 to get

>, 0 UTb
_Bl2 — 1 Y| 1
e =l H< ) () <U$b>

3) Find all possible solutions in terms of y = [y1; y2]

2

2

#1| What are all least-squares solutions to the above system? Among these which
one has minimum norm?
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Answer: From above, must have y; = El_lUf b and y», = anything (free).

Y2
— ViS{'UTb + Vi,
= |ATb + Voy,

Recall that: x = [Vq, V5 <y1> = Viy1 + Vayo

» Note: ATb € Ran(AT) and V,y, € Null(A).

» Therefore: least-squares solutions are all of the form:

Ao +w where w € Null(A).

» Smallest norm when y, = 0, i.e., when w = 0.
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» Minimum norm solution to min, || Az — b||3 satisfies X1y1 = Ulb, y» = 0.

> ltis: zrs = Vi3] 'UTb = A'b

“2] If A € R™*™ what are the dimensions of AT?, ATA?, AAT?

#3] Show that AT A is an orthogonal projector. What are its range and null-space?

#14] Same questions for AAT.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

1o " vul
T 1 T et}
A_V<O O>U => _

=1
Moore-Penrose conditions: I

The pseudo inverse X of a matrix is uniquely determined by these four conditions:

(1) AXA=A (2) XAX =X
3) (AX)H =AX (4) (XA)H=XxA

» In the full-rank overdetermined case, AT = (AT A)~1AT
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Least-squares problems and the SVD

» The SVD can give much information on solutions of overdetermined and underde-
termined linear systems.

Let A be an m X n matrix and A = UX V7T its SVD with » = rank(A), V =
(V150000 U = [U1,...,Up]. Then

r uZTb

LLsS — E

=l

(%
g;

minimizes ||b — Ax||2 and has the smallest 2-norm among all possible minimizers.
In addition,

prs = ||b — Azrs||2 = ||z]|2 With 2 = [upp1,y ..oy U]’ b
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem

min ||z||l2, S = {z € R"||[|b — Az|; min}.

This problem always has a unique solution given by

r = A'b
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#5| Consider the matrix: A

10 2 O
00 —21

e Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm
sense.

e Compute the thin SVD of A

e What is the pseudo-inverse of A?
e What is the pseudo-inverse of B?
e Find the vector = of smallest norm which minimizes ||b — Ax||» with b = (1, 1)T

e Find the vector x of smallest norm which minimizes ||b — Bz||» with b = (1, 1)7
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Ill-conditioned systems and the SVD

» letAbem x mand A = UXV 7T its SVD

» Solutionof Az =bisz=A"1b=>" ub V;

» When A is very ill-conditioned, it has many small singular values. The division by
these small o;’s will amplify any noise in the data. If b = b + € then

u;frb

O

A7'b = f:
1=1

m uZTe
v; + E V;
i—1 i

J

TV
Error

» Result: solution could be completely meaningless.
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Remedy: |SVD regularization

Truncate the SVD by only keeping the o s that are > T, where 7 is a threshold
» Gives the Truncated SVD solution (TSVD solution:)

u;frb
LTSVD — E

o;>T Oi

V;

» Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

» Assuming the original matrix A is exactly of rank k the computed SVD of A will
be the SVD of a nearby matrix A + E — Can show: |6; — ;| < a oju

» Result: zero singular values will yield small computed singular values and r larger
sing. values.

» Reverse problem: numerical rank — The e-rank of A :

re = min{rank(B) : B € R™*", ||A — B||2 < €},

#6| Show that r. equals the number sing. values that are >e€

#7| Show: r. equals the number of columns of A that are linearly independent for
any perturbation of A with norm < e.

» Practical problem : How to set €?
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Pseudo inverses of full-rank matrices
Case1: m > n |Then AT = (ATA) AT

» ThinSVDis A = U3,V and V4, 31 are n X n. Then:

(ATA)71AT = (M) s oT
= ViZ Vi, U}
= Vs 'UT
— Af

0 1)

Example: | Pseudo-inverse of 5 1 is?

\0 1
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Case2: m < n IThen AT = AT(AAT)!

» ThinSVDis A = U3, VL. Now Ui, X are m X m and:

AT (AAN T = v Ul o iU
= VXU U 2UY
= VS 32U7
= Vs Ut
— Al

12 -11

Example: |Pseudo-inverse of (O L2 0> is?

» Mnemonic: The pseudo inverse of A is AT completed by the inverse of the smaller
of (ATA)~1 or (AAT)~1 where it fits (i.e., left or right)
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