THE SINGULAR VALUE DECOMPOSITION (Cont.)

e The Pseudo-inverse
e Use of SVD for least-squares problems
e Application to regularization

e Numerical rank

Pseudo-inverse of an arbitrary matrix

» Let A = UXVT which we rewrite as

0\ (VT
-t (33) () -

_ 1
» Then the pseudo inverse of A is: Al = \ 2% lUf = Z _”j'“'?

i=19i
» The pseudo-inverse of A is the mapping from a vector b to the (unique) Minumum
Norm solution of the LS problem: min,, || Az — b||3 — (to be shown)

> Inthe full-rank overdetermined case, the normal equations yield x = (ATA)"*AT b
N———’
AT
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Least-squares problem via the SVD

Problem: min, ||b — Ax||; in general case.
» We want to:
e Find *all* possible least-squares solutions.
e Also find the one with min. 2-norm.

» SVD of A will play instrumental role in expressing solution

. 20\ (VT .
» Write SVD of A as: A= (Ul Uz) ( 0 0) (V;T> = Z O'iviulr
i=1
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Y2

(30) () - (o8)

3) Find all possible solutions in terms of y = [y1; y2]

1) Express z in V basis : ¢ = Vy = [V}, V3] (yl)

2) Then left multiply by UT to get
2
2~ ol =

2

What are all least-squares solutions to the above system? Among these which
one has minimum norm?
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Answer: From above, must have y; = 21_1U1Tb and y, = anything (free).

Recall that: x = [V1, V3] <zl> = Viy1 + Va2
2

= Vi 'UTb + Vays

= |ATb + Vays
> Note: ATb € Ran(AT) and Voy, € Null(A).

» Therefore: least-squares solutions are all of the form:

A'b 4w where w € Null(A).

» Smallest norm when y, = 0, i.e., when w = 0.
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» Minimum norm solution to min, || Az — b||? satisfies £;y; = UT'b, y» = 0.
> ltis: zrs = ViZ{'UIb = A'b

If A € R™*™ what are the dimensions of AT?, ATA?, AA?
Show that AT A is an orthogonal projector. What are its range and null-space?
Same questions for AAT.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

>7to " viul
T 1 T: g
A_V<O 0>U 27

i—1 i

‘ Moore-Penrose conditions:

The pseudo inverse X of a matrix is uniquely determined by these four conditions:

(1) AXA=A
B) (AX)H = AX

@ XAX =X
@) (XA)H =XxA

» In the full-rank overdetermined case, AT = (ATA)~1AT
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Least-squares problems and the SVD

» The SVD can give much information on solutions of overdetermined and underde-
termined linear systems.

Let A be an m x n matrix and A = UXVT its SVD with r = rank(A), V =
[V1y 230, U = [tq,...,uy]. Then
" ulb

mLS:§

=1

Ui
o;

minimizes ||b— Ax||» and has the smallest 2-norm among all possible minimizers.
In addition,

prs = ||b— Azps|l2 = ||z]|2 With 2 = [try1y -« Um]Tb
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem
min ||z|2, S = {z € R"|||b— Az|,min}.
This problem always has a unique solution given by

xz= A
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Consider the matrix: A

10 2 O
00 —-21

e Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm
sense.

e Compute the thin SVD of A

e What is the pseudo-inverse of A?
e What is the pseudo-inverse of B?
e Find the vector = of smallest norm which minimizes ||b — Ax||, with b = (1,1)T

e Find the vector = of smallest norm which minimizes ||b — Bz||> with b = (1, 1)T
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Ill-conditioned systems and the SVD

» Let Abe m x mand A = UXV T its SVD

> Solution of Az = bisz = A~b= Y™ “ly

i=1 g, Ut
» When A is very ill-conditioned, it has many small singular values. The division by
these small o;’s will amplify any noise in the data. If b = b + € then

s we=ulb " ule
A b = E v; + E V;

i=1 T =1 Ji

Error

» Result: solution could be completely meaningless.
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Remedy: | SVD regularization

Truncate the SVD by only keeping the /s that are > 7, where 7 is a threshold
» Gives the Truncated SVD solution (TSVD solution:)

ulb
LTSVD = Z

oi>T gi

U

» Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

» Assuming the original matrix A is exactly of rank k the computed SVD of A will
be the SVD of a nearby matrix A + E — Can show: |6; — ;| < a o1u

» Result: zero singular values will yield small computed singular values and r larger
sing. values.

» Reverse problem: numerical rank — The e-rank of A :

re = min{rank(B) : B € R™*",||A — B||> < €},

Show that 7. equals the number sing. values that are >e

Show: r. equals the number of columns of A that are linearly independent for
any perturbation of A with norm < e.

» Practical problem : How to set €?
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Pseudo inverses of full-rank matrices

Case 1: m > n |Then AT = (ATA) AT

» ThinSVDis A = U121V1T and V3,3, are n X n. Then:
(ATA)'AT = (»=2vh) vz ol

= iz 2V Vs, U
= vz, U7
= Af
01
. 1 2 .
Pseudo-inverse of o _1 is?
01
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(Case2:m < n | Then AT = AT(4AT)!

» ThinSVDis A = U, %, VL. Now Uy, ; are m X m and:
AT(AAD ! = vizs Ul o, 22Ut
= WS, UlU Ut
= WE,32Uf
= Viz; 'UF
= Af

. 1 2 .
Pseudoinverss o (g Lz g) 2

» Mnemonic: The pseudo inverse of A is AT completed by the inverse of the smaller
of (ATA)~ ! or (AAT)~! where it fits (i.e., left or right)
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