EIGENVALUE PROBLEMS

- Background and review on eigenvalue problems
- Diagonalizable matrices
- The Schur form
- Localization of eigenvalues Gerschgorin's theorem
- Perturbation analysis, condition numbers..

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

 $Ax = \lambda x$

 $\lambda \in \mathbb{C}$: eigenvalue

 $x \in \mathbb{C}^n$: eigenvector

Types of Problems:

- Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i 's in a certain region of \mathbb{C} ;
- Compute a few of the dominant eigenvalues;
- Compute all λ_i 's.

Eigenvalue Problems. Their origins

- Structural Engineering [$Ku = \lambda Mu$]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues)

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au=\lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

- $\triangleright \lambda$ is an eigenvalue iff the columns of $A \lambda I$ are linearly dependent.
- \succ ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A - \lambda I) = 0$$

- ightharpoonup w is a left eigenvector of A (u= right eigenvector)
- $ightharpoonup \lambda$ is an eigenvalue iff $\det(A \lambda I) = 0$

Basic definitions and properties (cont.)

➤ An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

- \triangleright So there are n eigenvalues (counted with their multiplicities).
- ightharpoonup The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

- ➤ Geometric multiplicity is ≤ algebraic multiplicity.
- ➤ An eigenvalue is simple if its (algebraic) multiplicity is one.
- ➤ It is semi-simple if its geometric and algebraic multiplicities are equal.

$$A = egin{pmatrix} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

- Same questions if, in addition, a_{12} is replaced by zero.

 \blacktriangleright Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$A = XBX^{-1}$$

- $ightharpoonup Av = \lambda v \Longleftrightarrow B(X^{-1}v) = \lambda(X^{-1}v)$ eigenvalues remain the same, eigenvectors transformed.
- \triangleright Issue: find X so that B has a simple structure

Definition: A is diagonalizable if it is similar to a diagonal matrix

- ightharpoonup THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors
- ➤ ... iff all its eigenvalues are semi-simple
- \succ ... iff its eigenvectors form a basis of \mathbb{R}^n

Transformations that preserve eigenvectors

Shift $B = A - \sigma I$: $Av = \lambda v \iff Bv = (\lambda - \sigma)v$ eigenvalues move, eigenvectors remain the same.

Polynomial $B=p(A)=\alpha_0I+\cdots+\alpha_nA^n$: $Av=\lambda v \Longleftrightarrow Bv=p(\lambda)v$ eigenvalues transformed, eigenvectors remain the same.

Invert $B=A^{-1}$: $Av=\lambda v \Longleftrightarrow Bv=\lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.

Shift & $B=(A-\sigma I)^{-1}$: $Av=\lambda v \Longleftrightarrow Bv=(\lambda-\sigma)^{-1}v$ eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.

THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QRQ^H$$

- ➤ Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).
- ightharpoonup It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix $oldsymbol{R}$
- ➤ Eigenvectors can be obtained by back-solving

Schur Form – Proof

- Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$
- There is a unitary transformation P such that $Px = e_1$. How do you define P?
- Show that $PAP^H = \left(rac{\lambda \mid **}{0 \mid A_2}
 ight)$.
- Apply process recursively to A_2 .
- Mhat happens if A is Hermitian?
- Another proof altogether: use Jordan form of A and QR factorization

Localization theorems and perturbation analysis

- ➤ Localization: where are the eigenvalues located in C?
- ightharpoonup Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector?
- ➤ Also: sensitivity of an eigenvalue to perturbations
- Next result is a "localization" theorem.
- ➤ We have seen one such result before. Let ||.|| be a matrix norm.

Then:

$$\forall\,\lambda\,\in\Lambda(A):|\lambda|\leq\|A\|$$

 \triangleright All eigenvalues are located in a disk of radius ||A|| centered at 0.

➤ More refined result: Gershgorin

THEOREM [Gershgorin]

$$orall \; \lambda \; \in \Lambda(A), \quad \exists \; i \quad ext{such that} \quad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^{j=n} |a_{ij}| \; .$$

In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and -F = -(D-A) is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $||(D - \lambda I)^{-1}F||_{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction \square

Gershgorin's theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$A = egin{pmatrix} 1 & -1 & 0 & 0 \ 0 & 2 & 0 & 1 \ -1 & -2 & -3 & 1 \ rac{1}{2} & rac{1}{2} & 0 & -4 \end{pmatrix}$$

- > Refinement: if disks are all disjoint then each of them contains one eigenvalue
- ightharpoonup Refinement: can combine row and column version of the theorem (column version: apply theorem to A^H).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}$, \tilde{u} be an approximate eigenpair with $\|\tilde{u}\|_2=1$, and let $r=A\tilde{u}-\tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A=XDX^{-1}$, with D diagonal. Then

$$\exists \ \lambda \in \Lambda(A) \quad ext{such that} \quad |\lambda - ilde{\lambda}| \leq ext{cond}_2(X) \|r\|_2 \ .$$

- Very restrictive result also not too sharp in general.
- ightharpoonup Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of A+E there is an eigenvalue λ of A such that:

$$|\lambda - ilde{\lambda}| \leq \mathsf{cond}_2(X) \|E\|_2$$
 .

Conditioning of Eigenvalues

 \triangleright Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

Eigenvalue $\lambda(t)$, Eigenvector u(t).

- ightharpoonup Conditioning of λ of A relative to E is $\left| \frac{d\lambda(t)}{dt} \right|_{t=0}$.

$$egin{aligned} w^H(A+tE)u(t) &= \lambda(t)w^Hu(t) &
ightarrow \ \lambda(t)w^Hu(t) &= w^HAu(t) + tw^HEu(t) \ &= \lambda w^Hu(t) + tw^HEu(t). \end{aligned}$$

$$ightarrow \ rac{\lambda(t) - \lambda}{t} w^H u(t) \ = w^H E u(t)$$

ightharpoonup Take the limit at t=0,

$$\lambda'(0) = rac{w^H E u}{w^H u}$$

- ➤ Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
- ightharpoonup Actual conditioning of an eigenvalue, given a perturbation "in the direction of E" is $|\lambda'(0)|$.
- \blacktriangleright In practice only estimate of ||E|| is available, so

$$|\lambda'(0)| \leq rac{\|Eu\|_2 \|w\|_2}{|(u,w)|} \leq \|E\|_2 rac{\|u\|_2 \|w\|_2}{|(u,w)|}$$

Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\mathsf{cond}(\lambda) = rac{1}{\cos heta(u,w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ .

Example: | Consider the matrix

$$A = \left(egin{array}{cccc} -149 & -50 & -154 \ 537 & 180 & 546 \ -27 & -9 & -25 \end{array}
ight)$$

 $ightharpoonup \Lambda(A) = \{1, 2, 3\}$. Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = \left(egin{array}{c} 0.3162 \ -0.9487 \ 0.0 \end{array}
ight) \quad ext{and} \quad w = \left(egin{array}{c} 0.6810 \ 0.2253 \ 0.6967 \end{array}
ight)$$

So:

$$cond(\lambda_1) \approx 603.64$$

 \triangleright Perturbing a_{11} to -149.01 yields the spectrum:

$$\{0.2287, 3.2878, 2.4735\}.$$

- > as expected..
- For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $cond(\lambda) = 1$.

Perturbations with Multiple Eigenvalues - Example

➤ Consider
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

- \blacktriangleright Worst case perturbation is in 3,1 position: set $A_{31}=\epsilon$.
- ightharpoonup Eigenvalues of perturbed A are the roots of $p(\mu) = (\mu-1)^3 4 \cdot \epsilon.$
- ightharpoonup Roots: $\mu_k=1+(4\epsilon)^{1/3}\,e^{rac{2ki\pi}{3}},\quad k=1,2,3$
- ightharpoonup Hence eigenvalues of perturbed A are $1 + O(\sqrt[3]{\epsilon})$.
- If index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to A leads to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to k=1.