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The symmetric eigenvalue problem: Basic facts

» (Consider the Schur form of a real symmetric matrix A:
A = QRQ"
Since A” = Athen R = RH »
Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, ) can be taken to be real when A is real.
(A—Al)(u+iv) =0—> (A—-—A)u=0& (A—AH)v =20

» (Can select eigenvector to be either u or v, whichever is # 0.
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: Aq > Ay > -« > A,

The eigenvalues of a Hermitian matrix A are characterized by the relation

. (Axz, x)
AL = max min
S, dim(S)=k =z€S,x#£0 (x, )

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is
an orthonormal basis of eigenvectors wq, uo, - - - , u,,. EXpress any vector x in this
basisas z = ) ;" , aju;. Then: (Azx,x)/(z,x) = > Ni|ai|?]/[> |eil?].

(a) Let S be any subspace of dimension k and let W = span{ug, ugi1,°+ s un}. A
dimension argument (used before) shows that SNW # {0}. So there is a non-zero
T, NS N W.




» Express this x,, in the eigenbasis as x,, = Z;”:k o;u;. Then since \; < Ay for
1 > k we have:

ATy, T vl agl)?
(Tws Tw) Zi:k |
Thus, for any subspace S of dim. k we have mingcg z+0(Ax, x)/(z, ) < Ag.

(b) We now take S, = span{ui,us,--- ,ur}. Since \; > Mg forz < Ek, for this
particular subspace we have:

(Az,z) . SF L Aile)? — A

min — min n
z €8, a0 (x,x) x € 8S,, £#0 Zi:k | ;|

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of
minges.+0(Ax, x)/(x, x) is equal to A




» Consequences:

(Ax, x) . (Azx, )
A1 = max A, = min
z£0 (x,x) z£0 (x, )

» Actually 4 versions of the same theorem. 2nd version:

_ (Ax, x)
A = min max
S, dim(S)=n—k+1 x€Sz#0 (x,x)

» Other 2 versions come from ordering eigenvalues increasingly instead of decreas-
ingly.

#1| Write down all 4 versions of the theorem

#2| Use the min-max theorem to show that || A||s = o1(A) - the largest singular
value of A.




» Interlacing Theorem: Denote the k X k principal submatrix of A as A, with
eigenvalues {A}*_ . Then

AT > AP > A0 > AT > A > A

Example: | \;'s = eigenvalues of A, u;'s = eigenvalues of A,,_;:

)\n )\n—l )\3 )\2 )\1
@k @ %k @& Sk O >k O Kk O® *x & k% 0
Hn—1 Hrn—2 L2 M1

» Many uses.

» For example: interlacing theorem for roots of orthogonal polynomials




The Law of inertia (real symmetric matrices)

» Inertia of a matrix = [m, z, p] with m = number of < 0 eigenvalues, z = number
of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester’s Law If X € R™*"™ js nonsingular, then A and
of inertia: XT AX have the same inertia.

» Terminology: X1 AX is congruentto A

#3| Suppose that A = LDL? where L is unit lower triangular, and D diagonal.
How many negative eigenvalues does A have?

#4| Assume that A is tridiagonal. How many operations are required to determine
the number of negative eigenvalues of A?




#5| Devise an algorithm based on the inertia theorem to compute the 2-th eigen-
value of a tridiagonal matrix.

#6| Let ' € R™*™ with n < m, and F of rank n.

What is the inertia of the matrix on the right: I F
[Hint: use a block LU factorization] FT o

» Note 1: Converse result also true: If A and B have same inertia they are congru-
ent. [This part is easy to show]

» Note 2: result also true for (complex) Hermitian matrices (X* AX has same
inertia as A).




Bisection algorithm for tridiagonal matrices: |

» Goal: to compute 2-th eigenvalue of A (tridiagonal)

» Getinterval [a, b] containing spectrum [Gerschgorin]: a < A, < -:-- < A\; < b
» Let o = (a + b)/2 = middle of interval
» Calculate p = number of positive eigenvalues of A — oI
o lfp>ithen\; € (o, ] > set a: =0
a Ap Ap_t C A A, b
I @ ® ® I o—0—© .1 I

e Elsethen \; € [a, 0] & set b:=o

» Repeat until b — a is small enough.




