ALGORITHMS FOR EIGENVALUE PROBLEMS

* The QR algorithm
 Practical QR algorithms: use of Hessenberg form and shifts
 The symmetric QR method

 The Power method



The OR algorithm

» The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR algorithm (basic)

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ

4. EndDo

» “Until Convergence” means “Until A becomes close enough to an upper triangular
matrix”

> Note: Apew = RQ = QH(QR)Q = QHAQ

» A, ew IS Unitarily similar to A — Spectrum does not change
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» Convergence analysis complicated — but insight: we are implicitly doing a QR
factorization of A*:

QR-Factorize: Multiply backward:
Step 1 Ayg = QoRy A1 = RyQo
Step 2 A =Q1 R,y Ay = R1Qq
Step 3: A2 = QQRQ A3 = R2Q2 Then:
(QoQ1Q:][R2 R Ry] = QoQ1A>R Ry
= Qu(Q1R1)(Q1R1)Ry

= QoA1A 1Ry, Ay = RyQo —

— \(QORO)J \(QORO)J \(QORU), — A3
A A A

> [QoQ1Q:][R2R1 Ry == QR factorization of A3

» This helps analyze the algorithm (details skipped)
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Practical QR algorithms: Shifts of origin

» Above basic QR algorithm never used as is in practice. Two variations:
(1) Use shift of origin and
(2) Start by transforming A into an Hessenberg matrix

Observation: (from theory): Last row converges fastest. Convergence is dictated by

| An]
|>‘n—1|

where we assume: |Aq| > [A2] > -+« > | An_1| > [l

» For simplicity we will consider the situation when all eigenvalues are real.

» As k — oo the last row (except a*)) converges to zero quickly ..

» .. and a{*) converges to eigenvalue of smallest magnitude.
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QR algorithm with shifts

» |dea: Apply QR algorithm to A% — puT
with © = a'®). Note: eigenvalues of
A®) — uT are shifted by p (eigenvectors
unchanged). — Shift matrix by +u I after
iteration.

1.
2.
3.
5

6.

Until row a;,, 1 < 2 < m converges to zero DO:

Obtain next shift (e.g. u = a,»)

A—ul =QR
Set A := RQ + pl
EndDo

» Convergence (of last row) is cubic at the limit! [for symmetric case]

14-5

GvL 8.1-8.2.3 — EigenPart3




» Result of algorithm:

EREEE

vy

» Next step: deflate, i.e., apply above algorithm to (n — 1) X (n — 1) upper block.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aijZOfOF’i>j—|—1

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmet-
ric form). Results in substantial savings: O(n?) flops per step instead of O(n?)

Transformation to Hessenberg form { * ok ok k% *\
*x *  x x  *x %
» Want H1AH! = H;AH, to have the 0 * * * * %
form shown on the right 0 * * * *x %
0 * * *x * %
» Consider the first step only on a 6 x 6 matrix \0 kK kK x)
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» Choose aw in H; = I —2ww?! to make the first column have zeros from position
3ton. Sow; = 0.

» Apply to left: B = H{ A

» Apply to right: A, = BH,;.

Main observation: the Householder matrix H; which transforms the column A(2 :
n, 1) into e; works only on rows 2 to n. When applying the transpose H; to the

right of B = H; A, we observe that only columns 2 to nn will be altered. So the
first column will retain the desired pattern (zeros below row 2).

» Algorithm continues the same way for columns 2, ...,.n — 2.
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OR algorithm for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix. Then columns 2
to n of @ are determined uniquely (up to signs) by the first column of Q.

» In other words if VITAV = G and QT AQ = H are both Hessenberg and
V(1) =Q((:,1)then V(:,4) = £Q(:,2) fort = 2 : n.

Implication: |To compute B = QT AQ we can:

» Compute 1st column of Q [== scalar X A(:,1)]

» Choose other columns so @@ = unitary, and B = Hessenberg.
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» W’ll do this with Givens rotations:

Example:

Withn = 5:

1. Choose G1 = G(1,2,6,) so that (G Ag)21 = 0

14-10
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2. Choose G5 =

3. Choose G5 =

G(2 3, 02) so that (G A1)31 =0

(* *
x ok
>» A, = G AGo= |0 «x
0 +

0

\0

G(3 4 03) so that (G A2)42 =0

O ¥ X % *

» Az = G AsGs =10

-
© O ¥ ¥ ¥
+ ¥ % % ¥

* X X * ¥

* X X * X




4. Choose G4 = G(4,5,0,) so that (G} A3)s3 = 0

(* x k% *\
x %k x %k
> Ay =G A;G,= [0 x % %
0O 0 % x =x
0 0 * =x

\0

» Process known as “Bulge chasing”

» Similar idea for the symmetric (tridiagonal) case

14-12 GvL 8.1-8.2.3 — EigenPart3




The OR algorithm for symmetric matrices

» Most common approach used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause

HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
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Practical method I

» How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step without explicitly
shifting the matrix..

» Two most popular shifts:

S = ap, and s =smallestev. of A(n —1:n,n—1:n)
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Basic algorithm: The power method

» Basic idea is to generate the sequence of vectors A*vy, where vy, # 0 — then
normalize.

» Most commonly used normalization: ensure that the largest component of the
approximation is equal to one.

The Power Method
1. Choose a nonzero initial vector v(©).
2. Fork =1,2,..., until convergence, Do:
3. o = argmax,_; _,|(Av* D)y
4. v = LApk-1)
5. EndDo

» argmax;—1,. n|Xi| = the component x; with largest modulus
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Convergence of the power method

THEOREM Assume there is one eigenvalue A; of A, s.t. |A1| > |\, for 3 # <,
and that X\ is semi-simple. Then either the initial vector v(®) has no component
in Null(A — X\I) or v® converges to an eigenvector associated with A; and

o — )\1.
Proof in the diagonalizable case.

» v*¥) is = vector A¥v(®) normalized by a certain scalar &;, in such a way that its
largest component is 1.

» Decompose initial vector v(® in the v® =3y,
eigenbasis as: -

» Each w; i1s an eigenvector associated with A;.




» Note that A"’uz = )\fuz

1 n
(k) — Koo .
(A — X SV U
scaling Z:: i
1 n
— X A uy + Ak U
scaling 1t 7;22 i
1 “ >\z g )
= — X “1+Z< ) Vi,
scaling’ 5 \A1/ M

» Second term inside bracket converges to zero. QED

» Proof suggests that the convergence factor is given by
_ [l
| A

where A, is the second largest eigenvalue in modulus.

PD
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Example: |Consider a ‘Markov Chain’ matrix of size n = 55. Dominant eigen-
values are A = 1 and A = —1 » the power method applied directly to A fails.
(Why?)

» We can consider instead the matrix I + A The eigenvalue A = 1 is then trans-
formed into the (only) dominant eigenvalue A = 2

lteration | Norm of diff. | Res. norm| Eigenvalue
20 0.639D-01 0.276D-01|1.02591636
40 0.129D-01|0.513D-02|1.00680780
60| 0.192D-020.808D-03|1.00102145
80| 0.280D-03 0.121D-03|1.00014720
100 0.400D-04 0.174D-04|1.00002078
120| 0.562D-05 0.247D-05|1.00000289
140 0.781D-060.344D-06|1.00000040
161 0.973D-07 0.430D-07|1.00000005
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The Shifted Power Method

» |n previous example shifted A into B = A + I before applying power method.
We could also iterate with B(o) = A + o1 for any positive o

Example: |With o = 0.1 we get the following improvement.

lteration | Norm of diff. Res. Norm | Eigenvalue
20| 0.273D-01 0.794D-02 | 1.00524001
40| 0.729D-03| 0.210D-03 /1.00016755
60 0.183D-04 | 0.509D-05|1.00000446
80| 0.437D-06| 0.118D-06|1.00000011
88| 0.971D-07| 0.261D-07  1.00000002
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» Question: What is the best shift-of-origin o to use?
» Easy to answer the question when all eigenvalues are real.
Assume all eigenvalues are real and labeled decreasingly:

AL > A2 Ay > -0 2> Ay,

Then: If we shift Ato A — oI:

The shift o that yields the best convergence factor is:

>\2+An
2

Oopt —

#1| Plot a typical convergence factor ¢(o) as a function of o. Determine the
minimum value and prove the above result.
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Inverse Iteration

Observation: The eigenvectors of A and A~! are identical.

» |dea: use the power method on A1,

» Will compute the eigenvalues closest to zero.

» Shift-and-invert Use power method on

» will compute eigenvalues closest to o.

» Rayleigh-Quotient lteration: use o =
(best approximation to A\ given v).

(A—ol) !

vT Av
vTv

» Advantages: fast convergence in general.

» Drawbacks: need to factor A (or A — o 1) into LU.
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