ALGORITHMS FOR EIGENVALUE PROBLEMS

- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric QR method
- The Power method

➤ Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k :

QR-Factorize: Multiply backward: $A_0 = Q_0 R_0 \qquad \qquad A_1 = R_0 Q_0$ Step 1 $A_1 = Q_1 R_1$ Step 2

 $A_2 = R_1 Q_1 \ A_3 = R_2 Q_2$

 $A_2 = Q_2 R_2$ Step 3: Then:

> $[Q_0Q_1Q_2][R_2R_1R_0] = Q_0Q_1A_2R_1R_0$ $= Q_0(Q_1R_1)(Q_1R_1)R_0$ $= Q_0 A_1 A_1 R_0, \qquad A_1 = R_0 Q_0 \rightarrow$ $=\underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A}=A^3$

> > GvL 8.1-8.2.3 – EigenPart3

- $ightharpoonup [Q_0Q_1Q_2][R_2R_1R_0] == QR$ factorization of A^3
- ➤ This helps analyze the algorithm (details skipped)

The QR algorithm

> The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR algorithm (basic)

- 1. Until Convergence Do:
- Compute the QR factorization A=QR
- Set A := RQ
- 4. EndDo
- \triangleright "Until Convergence" means "Until A becomes close enough to an upper triangular matrix"
- ightharpoonup Note: $A_{new}=RQ=Q^H(QR)Q=Q^HAQ$
- $ightharpoonup A_{new}$ is Unitarily similar to $A \to \mathsf{Spectrum}$ does not change

14-2 GvL 8.1-8.2.3 – EigenPart3

Practical QR algorithms: Shifts of origin

- ➤ Above basic QR algorithm never used as is in practice. Two variations:
- (1) Use shift of origin and
- (2) Start by transforming A into an Hessenberg matrix

Observation: (from theory): Last row converges fastest. Convergence is dictated by

where we assume: $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{n-1}| > |\lambda_n|$.

- ➤ For simplicity we will consider the situation when all eigenvalues are real.
- ightharpoonup As $k \to \infty$ the last row (except $a_{nn}^{(k)}$) converges to zero quickly ...
- \blacktriangleright .. and $a_{nn}^{(k)}$ converges to eigenvalue of smallest magnitude.

 GvL 8.1-8.2.3 EigenPart3

ightharpoonup Idea: Apply QR algorithm to $A^{(k)} - \mu I$ $A^{(k)} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & a \\ \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline a & a & a & a & a & a \\ \hline \end{pmatrix} \text{ | Idea: Apply QR algorithm to } A^{(k)} - \mu I \text{ with } \mu = a^{(k)}_{nn}. \text{ Note: eigenvalues of } A^{(k)} - \mu I \text{ are shifted by } \mu \text{ (eigenvectors unchanged).} \rightarrow \text{Shift matrix by } + \mu I \text{ after iteration.}$

QR algorithm with shifts

- 1. Until row a_{in} , $1 \le i < n$ converges to zero DO:
- Obtain next shift (e.g. $\mu = a_{nn}$)
- $A \mu I = QR$
- Set $A := RQ + \mu I$
- 6. EndDo
- Convergence (of last row) is cubic at the limit! [for symmetric case]

GvL 8.1-8.2.3 - EigenPart3

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$a_{ij}=0 ext{ for } i>j+1$$

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmetric form). Results in substantial savings: $O(n^2)$ flops per step instead of $O(n^3)$

Transformation to Hessenberg form

- \triangleright Consider the first step only on a 6×6 matrix

GvL 8.1-8.2.3 – EigenPart3

> Result of algorithm:

 \triangleright Next step: deflate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper block.

GvL 8.1-8.2.3 - EigenPart3

- \triangleright Choose a w in $H_1 = I 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.
- \triangleright Apply to left: $B = H_1A$
- \triangleright Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2:n,1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1 A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

 \triangleright Algorithm continues the same way for columns 2, ..., n-2.

GvL 8.1-8.2.3 - EigenPart3

QR algorithm for Hessenberg matrices

➤ Need the "Implicit Q theorem"

Suppose that Q^TAQ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

▶ In other words if $V^TAV = G$ and $Q^TAQ = H$ are both Hessenberg and V(:,1) = Q(:,1) then $V(:,i) = \pm Q(:,i)$ for i=2:n.

Implication: To compute $B = Q^T A Q$ we can:

- ightharpoonup Compute 1st column of Q [== scalar imes A(:,1)]
- \triangleright Choose other columns so Q = unitary, and B = Hessenberg.

GvL 8.1-8.2.3 – EigenPart3

2. Choose $G_2 = G(2,3,\theta_2)$ so that $(G_2^T A_1)_{31} = 0$

$$lacksquare A_2 = G_2^T A_1 G_2 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & + & * & * & * \ 0 & 0 & 0 & * & * \end{pmatrix}$$

3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^T A_2)_{42} = 0$

$$lackbrack A_3 = G_3^T A_2 G_3 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & + & * & * \end{pmatrix}$$

➤ W'll do this with Givens rotations:

Example: With n = 5:

 $A = egin{pmatrix} * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & 0 & * & * \end{pmatrix}$

GvL 8.1-8.2.3 - EigenPart3

1. Choose $G_1=G(1,2, heta_1)$ so that $(G_1^TA_0)_{21}=0$

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^T A_3)_{53} = 0$

$$lackbox{ iny} A_4 = G_4^T A_3 G_4 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & 0 & * & * \end{pmatrix}$$

- ➤ Process known as "Bulge chasing"
- ➤ Similar idea for the symmetric (tridiagonal) case

-12 ______ GvL 8.1-8.2.3 – EigenPart3

The QR algorithm for symmetric matrices

- Most common approach used: reduce to tridiagonal form and apply the QR algorithm with shifts.
- > Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$HAH^T = A_1$$

is symmetric and also of Hessenberg form > it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

Practical method

- ➤ How to implement the QR algorithm with shifts?
- ▶ It is best to use Givens rotations can do a shifted QR step without explicitly shifting the matrix...
- > Two most popular shifts:

$$s=a_{nn}$$
 and $s=$ smallest e.v. of $A(n-1:n,n-1:n)$

GvL 8.1-8.2.3 - EigenPart3

Basic algorithm: The power method

- **>** Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ then normalize.
- Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- 2. For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $lpha_k = \mathop{\mathrm{argmax}}_{i=1,...,n} |(Av^{(k-1)})_i|$ 4. $v^{(k)} = \frac{1}{lpha_i} Av^{(k-1)}$
- 5. EndDo

 $ightharpoonup \arg\max_{i=1,...n} |\mathbf{x}_i| \equiv \text{the component } x_i \text{ with largest modulus}$

GvL 8.1-8.2.3 – EigenPart3

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in Null $(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $ightharpoonup v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.
- ightharpoonup Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$

GvL 8.1-8.2.3 - EigenPart3

 \triangleright Each u_i is an eigenvector associated with λ_i .

GvL 8.1-8.2.3 – EigenPart3

ightharpoonup Note that $A^k u_i = \lambda_i^k u_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} imes \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} imes \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i u_i
ight] \ &= rac{1}{scaling'} imes \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- Second term inside bracket converges to zero. QED
- > Proof suggests that the convergence factor is given by

$$ho_D = rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

GvL 8.1-8.2.3 - EigenPart3

The Shifted Power Method

 \triangleright In previous example shifted A into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.00000002

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1$ be the power method applied directly to A fails. (Why?)

 \triangleright We can consider instead the matrix I+A The eigenvalue $\lambda=1$ is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

GvL 8.1-8.2.3 - EigenPart3

- \triangleright Question: What is the best shift-of-origin σ to use?
- Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 > \lambda_2 > \cdots > \lambda_n$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ . Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- ightharpoonup Idea: use the power method on A^{-1} .
- ➤ Will compute the eigenvalues closest to zero.
- ightharpoonup Shift-and-invert Use power method on $\overline{(A-\sigma I)^{-1}}$
- \triangleright will compute eigenvalues closest to σ .
- ➤ Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- ➤ Advantages: fast convergence in general.
- ightharpoonup Drawbacks: need to factor A (or $A \sigma I$) into LU.

14-21 ______ GvL 8.1-8.2.3 – EigenPart3