ALGORITHMS FOR EIGENVALUE PROBLEMS

* The QR algorithm
« Practical QR algorithms: use of Hessenberg form and shifts
* The symmetric QR method

* The Power method

The QR algorithm

» The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR algorithm (basic)

1. Until Convergence Do:

2 Compute the QR factorization A = QR
3. Set A := RQ

4. EndDo

» “Until Convergence” means “Until A becomes close enough to an upper triangular
matrix”

> Note: A,y = RQ = QY (QR)Q = Q7 AQ

» A, IS Unitarily similar to A — Spectrum does not change
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» Convergence analysis complicated — but insight: we are implicitly doing a QR
factorization of A*:

QR-Factorize: Multiply backward:
Step 1 Ap = QoRy A = RyQo
Step 2 A= QR Ay = R1Q,
Step 3: Ag = Q2R2 Az = RzQz Then:
[QoQ1Q:][R:R1Ry] = QoQ1A2R 1Ry
= Qo(Q1R1)(Q:1R1)R,
= QoA1A R, A = RoQo —
= R R Ry) = A®
(Q(l; 0) (QOA 0) (Q?4 0)

> [QoQ1Q:][R2R; Ry) == QR factorization of A3
» This helps analyze the algorithm (details skipped)
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Practical QR algorithms: Shifts of origin

» Above basic QR algorithm never used as is in practice. Two variations:

(1) Use shift of origin and
(2) Start by transforming A into an Hessenberg matrix

Observation: (from theory): Last row converges fastest. Convergence is dictated by

[An
[An—1]

where we assume:  |Aq| > [Az| > - > [Apo1]| > | Al

| » For simplicity we will consider the situation when all eigenvalues are real.|

> As k — oo the last row (except a¥)) converges to zero quickly ..

> .. and a(¥) converges to eigenvalue of smallest magnitude.
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> Idea: Apply QR algorithm to A®) — p I
with o = al®). Note: eigenvalues of
A®) — T are shifted by p (eigenvectors
unchanged). — Shift matrix by +pu I after

iteration.

AR —

e @ @ 0 9

QR algorithm with shifts

1. Until row a;,,1 < % < n converges to zero DO:
2 Obtain next shift (e.9. p = any)

3. A—upul =QR

5 Set A := RQ + pl

6. EndDo

» Convergence (of last row) is cubic at the limit! [for symmetric case]
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» Result of algorithm:

AR —

0 0 0 0 0N

> Next step: deflate, i.e., apply above algorithm to (n — 1) x (n — 1) upper block.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that
a,-j:Ofori >j+1

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmet-
ric form). Results in substantial savings: O(n?) flops per step instead of O(n?)

Transformation to Hessenberg form

» Want HiAH! = H;AH, to have the
form shown on the right

S O O O * X
L
* O % ot X %
* O % ot X %
L
L S R

» Consider the first step only on a 6 X 6 matrix
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» Choose aw in H; = I —2ww” to make the first column have zeros from position
3ton. Sow; = 0.

> Apply to left: B = H1 A

» Apply to right: A; = BH;.

Main observation: the Householder matrix H; which transforms the column A(2 :
n,1) into e; works only on rows 2 to n. When applying the transpose Hj to the

right of B = H; A, we observe that only columns 2 to n will be altered. So the
first column will retain the desired pattern (zeros below row 2).

» Algorithm continues the same way for columns 2, ....n — 2.
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OR algorithm for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix. Then columns 2
to n of @ are determined uniquely (up to signs) by the first column of Q.

» In other words if VTAV = G and QTAQ = H are both Hessenberg and
V(1) =Q(:;,1) then V(:,7) = £Q(:,4) fori = 2 : n.

Implication: | To compute B = QT AQ we can:

» Compute 1st column of @ [== scalar x A(:,1)]

» Choose other columns so @Q = unitary, and B = Hessenberg.
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» Wl do this with Givens rotations:

A=
| Example: |Wihn =5

o O O ¥ ¥
S O ¥ ¥ ¥

1. Choose G1 = G(1, 2, 6,) so that (GT Ag)21 = 0

> A = GTAG, =

o o+ % *
O O ¥ ¥ ¥
O % ¥ % %
* ¥ ¥ ¥ *
* X ¥ % *
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S ¥ ¥ ¥ ¥
* ¥ ¥ ¥ ¥
* ¥ ¥ ¥ ¥
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2. Choose G = G(2, 3, 0,) so that (GTA1)31 =0

> Ay, = GTA G, =

oo o % %
o+ % ¥ *
O % ¥ % %
% % % ¥ %
* % ¥ ¥ *

3. Choose G3 = G(3,4, 65) so that (GF As)4s =

=)

> Az = GTA,G3 =

©c oo % %
o O % * %
+ % % % ¥
* % % % %
* % % % %

4. Choose G4 = G(4,5,0,) so that (GT A3)s3 = 0

> Ay = GTAG, =

S O O ¥ ¥
S O ¥ ¥ ¥
S ¥ ¥ ¥ ¥
¥ ¥ ¥ X ¥
¥ ¥ ¥ X ¥

» Process known as “Bulge chasing”

» Similar idea for the symmetric (tridiagonal) case
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The QR algorithm for symmetric matrices

» Most common approach used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause
HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
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‘ Practical method

» How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step without explicitly
shifting the matrix..

» Two most popular shifts:

$ = app and s = smalleste.v. of A(n —1:n,n —1:n)
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Basic algorithm: The power method

» Basic idea is to generate the sequence of vectors A¥vy where vy # 0 — then
normalize.

» Most commonly used normalization: ensure that the largest component of the
approximation is equal to one.

The Power Method
1. Choose a nonzero initial vector v(©).
Fork = 1,2,..., until convergence, Do:
ap = argmax;_; _,|(Av*~Y);|
o®) = L pyk1)
EndDo '

» argmaxi_i,.. »|Xi| = the component x; with largest modulus
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Convergence of the power method

THEOREM Assume there is one eigenvalue A; of A, s.t. |A:| > |A|, for j # 4,
and that \; is semi-simple. Then either the initial vector »(°) has no component
in Null(A — X\ I) or v(®) converges to an eigenvector associated with A; and
ap — Al.

Proof in the diagonalizable case.

» v is = vector A*v(®) normalized by a certain scalar é;, in such a way that its
largest component is 1.

n
» Decompose initial vector v in the v® =3 v
eigenbasis as: i=1
» Each wu; is an eigenvector associated with \;.
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> Note that A*u; = A,

1 n
k) — = L2V
v X g Alyiu

scaling = i Yithi

1
= —— X

n
Neyiug + ) Moy,
scaling 1t Z i it

=2

1 LD VALY
e () 1
scaling’ A/ ™

=2

» Second term inside bracket converges to zero. QED

» Proof suggests that the convergence factor is given by
_ 1l
| A

where A is the second largest eigenvalue in modulus.

PD

Consider a ‘Markov Chain’ matrix of size n = 55. Dominant eigen-

values are A = 1 and A = —1 » the power method applied directly to A fails.

(Why?)

» We can consider instead the matrix I + A The eigenvalue A = 1 is then trans-

formed into the (only) dominant eigenvalue A = 2
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Iteration | Norm of diff. | Res. norm| Eigenvalue
20| 0.639D-01|0.276D-01 | 1.02591636
40| 0.129D-01|0.513D-02|1.00680780
60| 0.192D-02|0.808D-03|1.00102145
80| 0.280D-03|0.121D-03|1.00014720
100| 0.400D-04|0.174D-04|1.00002078
120| 0.562D-05|0.247D-05|1.00000289
140| 0.781D-06|0.344D-06|1.00000040
161| 0.973D-07|0.430D-07|1.00000005
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The Shifted Power Method

» In previous example shifted A into B = A + I before applying power method.

We could also iterate with B(o) = A + oI for any positive o

With o = 0.1 we get the following improvement.

Iteration | Norm of diff. | Res. Norm| Eigenvalue
20| 0.273D-01| 0.794D-02 | 1.00524001
40| 0.729D-03| 0.210D-03|1.00016755
60| 0.183D-04| 0.509D-05|1.00000446
80| 0.437D-06| 0.118D-06 | 1.00000011
88| 0.971D-07| 0.261D-07|1.00000002

14-19

GvL 8.1-8.2.3 — EigenPart3

» Question: What is the best shift-of-origin o to use?

» Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:
AM>A 2 A2 2> Ay

Then: If we shift Ato A — oI:

The shift o that yields the best convergence factor is:

Az‘i‘)\n

Oopt =
2

Plot a typical convergence factor ¢(o) as a function of . Determine the
minimum value and prove the above result.
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Inverse Iteration

Observation: The eigenvectors of A and A~ are identical.
» ldea: use the power method on A~

» Will compute the eigenvalues closest to zero.

» Shift-and-invert Use power method on [(A — oI)7!|

» will compute eigenvalues closest to o.

vT Av
vy

» Rayleigh-Quotient lteration: use o =
(best approximation to A given v).

» Advantages: fast convergence in general.

» Drawbacks: need to factor A (or A — o I) into LU.
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