Matrices and Tensors

» Types of matrices
» Matrices with structure
» Special matrices

* A few words on tensors



Types of (square) matrices

e Symmetric AT = A. e Skew-symmetric Al = —A.
e Hermitian A¥ = A. e Skew-Hermitan A" = —A.

e Normal AHA = AAH,
e Nonnegative a;; >0, 2,7 =1,...,n
e Similarly for nonpositive, positive, and negative matrices

e Unitary Q¥ Q = I. (for complex matrices)




[Note: Common useage restricts this definition to complex matrices. An orthogonal
matrix IS @ unitary real matrix — not very natural |

e Orthogonal QT Q = I [orthonormal columns]

In this class: W’Il call unitary matrix a square matrix with orthonormal columns,
whether real or complex. [so: Orthogonal + square = unitary]

» The term “orthonormal” matrix is rarely used.




#1| What is the inverse of a unitary (complex / real) matrix?

#2| What can you say about the diagonal entries of a skew-symmetric (real) matrix?

#3| What can you say about the diagonal entries of a Hermitian (complex) matrix?

#4| What can you say about the diagonal entries of a skew-Hermitian (complex)
matrix?

#s5| Which matrices of the following type are also normal: real symmetric, real
skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skew-
symmetric matrices.

#6| Find all real 2 x 2 matrices that are normal.

#7| Show that a triangular matrix that is normal is diagonal.
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Matrices with structure

e Diagonal a;; = 0 for 3 # . Notation :

A = diag (0,11, A224 ¢ o oo ann) .

e Upper triangular a;; = 0 forz > j.
e Lower triangular a;; = 0 forz < j.
e Upper bidiagonal a;; =0forj #¢and j # ¢ + 1.
e Lower bidiagonal a;; =0forg #<andj # ¢ — 1.

e Tridiagonal a;; = 0 when |2 — 5| > 1.
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e Banded a;; # 0 only whenz —m; < 3 < 2 + m,, ‘Bandwidth’ = m; + m,, 4 1.

e Upper Hessenberg a;; = 0 whenz > j 4 1. Lower Hessenberg matrices can be
defined similarly.

e Outer product A = uwv?, where both uw and v are vectors.

e Block tridiagonal generalizes tridiagonal matrices by replacing each nonzero entry
by a square matrix.




Special matrices

Vandermonde : Given a column of entries [xg, 1, -+ ,x,]T put its (component-
wise) powers into the columns of a matrix V':
2 n
(1 Ty Ty v :130\
vV — 1 xf -+ x?
2 n
Kl Ty T, < T

#g| Try the matlab function vander

#9| What does the matrix-vector product V a represent?

#10| Interpret the solution of the linear system Va = y where a is the unknown.
Sketch a ‘fast’ solution method based on this.




Toeplitz
» Entries are constant along diagonals, i.e., a;; = r;_;.

» Determined by m + n — 1 values r;_;.

» Toeplitz systems (m = n) can be solved in O(n?) ops.

» The whole inverse (!) can be determined in O(n?) ops.

#11| Explore toeplitz(c,r) in matlab.
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Hankel : Entries are constant
along anti-diagonals, i.e., a;; =
hjyioi.
Determined by m + n — 1 values
hjii.

#12| Explore hankel(c,r) in matlab.
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Circulant : Entries in a row are
cyclically right-shifted to form next
row. Determined by n values.

» A simple and important circulant matrix
is the up-shift matrix S,
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#13| How can you generate a circulant matrix in matlab?

o2
[

. TV
Circulant

“ 14| If C'is circulant (real) and symmetric, what can be said about the ¢;’s?

(01 0 0 O]
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o O = O
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#15| What is the result of multiplying S,, by a vector? What are the powers of S,,?
What is the inverse of S,,?

#16| Show that

C = ClI -+ CzSn -+ 03S§ e cnSZ_l

As a result show that all circulant matrices of the same size commute.

#17| (Continuation) Use the result of the previous exercise to show that the product
of two circulant matrices is circulant.
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Sparse matrices |

» Matrices with very few nonzero entries — so few that this can be exploited.
» Many of the large matrices encountered in applications are sparse.
» Main idea of “sparse matrix techniques” is not to represent the zeros.

» This will be covered in some detail at the end of the course.




A few words on tensors

» A tensor is a multidimensional array A= (ai i i) € RiXd2X X dny
. . . — 21922900092
» An order IN tensor requires IN indices: R

» Each d,, is the n-th dimension of A.

» A vector is an order-1 tensor and a matrix is an order-2 tensor.
» Order 3 tensor indexed by 3 indices %1, 22, 23 O 2, 3, k.

» For each fixed z3 (or k) a. . ;, Is a matrix - a frontal slice

» a(t1,%2, ¢ stn_15 : snt1s* " 52yn) IS afiber (a vector) in n-th mode

#18| How many mode n fibers are there?




a112 a122 5 7
> lllustration [1st and 2nd in- am/am/ 1/ 3/
dices: top to bottom and leftto A = =
right, 3rd: front to back] /azm /Cl222 /6 /8
azii a221 2 4

» For above example, frontal slices are A, = 13 A, — 5 7)
the matrices

» The mode-2 fibers are: fr= (;) , J2 = <i> » J3 = (?) » Ja= <g>

» Note order: a(x,:,y) : a(1,:,1),a(2,:,1),a(1,:,2),a(2,:,2)




Unfolding and mode-n products Useful for visualizing tensors of order N > 3.
» Unfolding of a tensor along mode n is a matrix A, of dimension

d X (dl n 1dn_|_1 dN)

» Columns of A, are all mode n fibers of A

» For the above example tensor A, the three mode-n unfoldings are
1357 1256 1234
A(l)_[2468]’ A(z)_[3478]’ A(3)_[5678]‘

» Note: In Python/Pytorch tensors are stored differently from multidimensional ar-
rays in matlab




Mode-n Product or tensor-matrix product Given a tensor A € R%1Xd:Xxdn gng
a matrix M € R%*9 the mode-n product is a tensor

B=A®, M ¢ RhXdaxenxdiixdy  yherg

b(zla coeeslpn—T19Tnsln41yeeey 'LN) —
dn

Z a(ila oo ln_1ylnybnglse. .y ZN) m(]na zn) for g, = 1,2,...,¢,

=1

» Matrix interpretation : | B,y = M A(y,).




» Here are a couple of properties of tensor-matrix multiplication:

 For m # m, and matrices F' and G of appropriate dimensions,
» For any n, and for matrices F' and G of appropriate dimensions,

(AR, F) ®,G=AR, (GF).

» for a general n, the mode-n product of two matrices is not defined, can safely omit
the parentheses and write (A ®,, F') ®.,, G as AR, F Q., G.




