Matrices and Tensors

- Types of matrices
- Matrices with structure
- Special matrices
- · A few words on tensors

[Note: Common useage restricts this definition to complex matrices. An *orthogonal matrix* is a unitary *real* matrix – not very natural]

• Orthogonal $Q^TQ = I$ [orthonormal columns]

In this class: W'll call unitary matrix a square matrix with orthonormal columns, whether real or complex. [so: Orthogonal + square = unitary]

➤ The term "orthonormal" matrix is rarely used.

Types of (square) matrices

- Symmetric $A^T = A$. Skew-symmetric $A^T = -A$.
- Hermitian $A^H = A$. Skew-Hermitian $A^H = -A$.
- Normal $A^H A = A A^H$.
- Nonnegative $a_{ij} \geq 0, i, j = 1, \ldots, n$
- Similarly for nonpositive, positive, and negative matrices
- Unitary $Q^HQ=I$. (for complex matrices)

2-2 GvL: 2.1 – Matrices

- What is the inverse of a unitary (complex / real) matrix?
- What can you say about the diagonal entries of a skew-symmetric (real) matrix?
- What can you say about the diagonal entries of a Hermitian (complex) matrix?
- What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?
- Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skew-symmetric matrices.
- Find all real 2×2 matrices that are normal.
- Show that a triangular matrix that is normal is diagonal.

Matrices with structure

• Diagonal $a_{ij} = 0$ for $j \neq i$. Notation :

$$A = \text{diag}(a_{11}, a_{22}, \dots, a_{nn}).$$

- Upper triangular $a_{ij} = 0$ for i > j.
- Lower triangular $a_{ij} = 0$ for i < j.
- Upper bidiagonal $a_{ij} = 0$ for $j \neq i$ and $j \neq i+1$.
- Lower bidiagonal $a_{ij} = 0$ for $j \neq i$ and $j \neq i 1$.
- Tridiagonal $a_{ij} = 0$ when |i j| > 1.

- Banded $a_{ij} \neq 0$ only when $i m_l \leq j \leq i + m_u$, 'Bandwidth' = $m_l + m_u + 1$.
- ullet Upper Hessenberg $a_{ij}=0$ when i>j+1. Lower Hessenberg matrices can be defined similarly.
- Outer product $A = uv^T$, where both u and v are vectors.
- Block tridiagonal generalizes tridiagonal matrices by replacing each nonzero entry by a square matrix.

2-5 ______ GvL: 2.1 – Matrices 2-6 _____

Special matrices

Vandermonde: Given a column of entries $[x_0, x_1, \cdots, x_n]^T$ put its (componentwise) powers into the columns of a matrix V:

$$V = egin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \ 1 & x_1 & x_1^2 & \cdots & x_1^2 \ dots & dots & dots & dots \ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

✓ Try the matlab function vander

Mhat does the matrix-vector product Va represent?

Interpret the solution of the linear system Va=y where a is the unknown. Sketch a 'fast' solution method based on this.

Toeplitz:

 \blacktriangleright Entries are constant along diagonals, i.e., $a_{ij}=r_{j-i}$.

ightharpoonup Determined by m+n-1 values r_{i-i} .

$$T = egin{pmatrix} r_0 & r_1 & r_2 & r_3 & r_4 \ r_{-1} & r_0 & r_1 & r_2 & r_3 \ r_{-2} & r_{-1} & r_0 & r_1 & r_2 \ r_{-3} & r_{-2} & r_{-1} & r_0 & r_1 \ r_{-4} & r_{-3} & r_{-2} & r_{-1} & r_0 \end{pmatrix} \ ag{Toeplitz}$$

GvL: 2.1 - Matrices

- ightharpoonup Toeplitz systems (m=n) can be solved in $O(n^2)$ ops.
- ightharpoonup The whole inverse (!) can be determined in $O(n^2)$ ops.

<u>
≰11</u> Explore toeplitz(c,r) in matlab.

7 ______ GvL: 2.1 – Matrices 2.8 ______ GvL: 2.1 – Matrices

 $\begin{array}{l} \textit{Hankel} : \text{ Entries are constant} \\ \text{along anti-diagonals, i.e., } a_{ij} = \\ h_{j+i-1}. \\ \text{Determined by } m+n-1 \text{ values} \\ h_{j+i-1}. \end{array}$

Explore hankel(c,r) in matlab.

 ${\it Circulant}$: Entries in a row are cyclically right-shifted to form next row. Determined by n values.

$$C = egin{array}{ccccc} c_1 & c_2 & c_3 & c_4 & c_5 \ c_5 & c_1 & c_2 & c_3 & c_4 \ c_4 & c_5 & c_1 & c_2 & c_3 \ c_3 & c_4 & c_5 & c_1 & c_2 \ c_2 & c_3 & c_4 & c_5 & c_1 \ \end{pmatrix} \ aggr{Circulant}$$

✓ 13 How can you generate a circulant matrix in matlab?

If C is circulant (real) and symmetric, what can be said about the c_i 's?

ightharpoonup A simple and important circulant matrix is the up-shift matrix S_n

$$S_5 = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

GvL: 2.1 - Matrices

9 GvL: 2.1 – Matrices

△
16 Show that

$$C = c_1 I + c_2 S_n + c_3 S_3^2 + \dots + c_n S_n^{n-1}$$

As a result show that all circulant matrices of the same size commute.

(Continuation) Use the result of the previous exercise to show that the product of two circulant matrices is circulant.

Sparse matrices

- ➤ Matrices with very few nonzero entries so few that this can be exploited.
- ➤ Many of the large matrices encountered in applications are sparse.
- ➤ Main idea of "sparse matrix techniques" is not to represent the zeros.
- > This will be covered in some detail at the end of the course.

2-11 ______ GvL: 2.1 – Matrices 2-12 ______ GvL: 2.1 – Matrices

A few words on tensors

➤ A *tensor* is a multidimensional array

$$\mathbf{A} = (a_1 : ...) \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_N}$$

➤ An order N tensor requires N indices:

$$\mathcal{A} = (a_{i_1,i_2,...,i_N}) \in \mathbb{R}^{d_1 imes d_2 imes \cdots imes d_N}$$

 \triangleright Each d_n is the n-th dimension of \mathcal{A} .

➤ A vector is an order-1 tensor and a matrix is an order-2 tensor.

 \triangleright Order 3 tensor indexed by 3 indices i_1, i_2, i_3 or i, j, k.

 \blacktriangleright For each fixed i_3 (or k) $a_{:::,i_3}$ is a matrix - a frontal slice

 $ightharpoonup a(i_1,i_2,\cdots,i_{n-1},:,i_{n+1},\cdots,i_n)$ is a fiber (a vector) in n-th mode

➤ For above example, frontal slices are the matrices

$$A_1=egin{pmatrix}1&3\2&4\end{pmatrix}$$
 $A_2=egin{pmatrix}5&7\6&8\end{pmatrix}$

➤ The mode-2 fibers are:

$$f_1=egin{pmatrix}1\3\end{pmatrix},\; f_2=egin{pmatrix}2\4\end{pmatrix},\; f_3=egin{pmatrix}5\7\end{pmatrix},\; f_4=egin{pmatrix}6\8\end{pmatrix}$$

ightharpoonup Note order: a(x,:,y):a(1,:,1),a(2,:,1),a(1,:,2),a(2,:,2)

GvL: 2.1 - Matrices

Unfolding and mode-n products Useful for visualizing tensors of order N > 3.

ightharpoonup Unfolding of a tensor along mode n is a matrix $A_{(n)}$ of dimension

$$d_n \times (d_1 \cdots d_{n-1} d_{n+1} \cdots d_N).$$

 \triangleright Columns of $A_{(n)}$ are all mode n fibers of \mathcal{A}

 \triangleright For the above example tensor \mathcal{A} , the three mode-n unfoldings are

$$m{A}_{(1)} = egin{bmatrix} 1 & 3 & 5 & 7 \ 2 & 4 & 6 & 8 \end{bmatrix}, \quad m{A}_{(2)} = egin{bmatrix} 1 & 2 & 5 & 6 \ 3 & 4 & 7 & 8 \end{bmatrix}, \quad m{A}_{(3)} = egin{bmatrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \end{bmatrix}.$$

➤ Note: In Python/Pytorch tensors are stored differently from multidimensional arrays in matlab

Mode-n Product or tensor-matrix product Given a tensor $\mathcal{A} \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_N}$ and

a matrix $M \in \mathbb{R}^{c_n \times d_n}$, the mode-n product is a tensor $\mathcal{B} = \mathcal{A} \otimes_n M \in \mathbb{R}^{d_1 imes \cdots imes d_{n-1} imes c_n imes d_{n+1} \cdots imes d_N}$ where

$$b(i_1,\ldots,i_{n-1}, extstyle{j_n},i_{n+1},\ldots,i_N)=\ \sum_{i_n=1}^{d_n}a(i_1,\ldots,i_{n-1}, extstyle{i_n},i_{n+1},\ldots,i_N)\ m(extstyle{j_n}, extstyle{i_n})\ ext{for }j_n=1,2,\ldots,c_n$$

Matrix interpretation : $B_{(n)} = MA_{(n)}$.

- ➤ Here are a couple of properties of tensor-matrix multiplication:
- ullet For m
 eq n, and matrices F and G of appropriate dimensions,

$$(\mathcal{A} \otimes_n F) \otimes_m G = (\mathcal{A} \otimes_m G) \otimes_n F.$$

ullet For any n, and for matrices F and G of appropriate dimensions,

$$(\mathcal{A} \otimes_n F) \otimes_n G = \mathcal{A} \otimes_n (GF).$$

▶ for a general n, the mode-n product of two matrices is not defined, can safely omit the parentheses and write $(A \otimes_n F) \otimes_m G$ as $A \otimes_n F \otimes_m G$.

2-17 ______ GvL: 2.1 – Matrices