
Matrices and Tensors
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• Special matrices

• A few words on tensors
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Types of (square) matrices

• Symmetric AT = A. • Skew-symmetric AT = −A.
• Hermitian AH = A. • Skew-Hermitian AH = −A.

• Normal AHA = AAH .

• Nonnegative aij ≥ 0, i, j = 1, . . . , n

• Similarly for nonpositive, positive, and negative matrices

• Unitary QHQ = I. (for complex matrices)
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2-2[Note: Common useage restricts this definition to complex matrices. An orthogonal
matrix is a unitary real matrix – not very natural ]

• Orthogonal QTQ = I [orthonormal columns]

In this class: W’ll call unitary matrix a square matrix with orthonormal columns,
whether real or complex. [so: Orthogonal + square = unitary]

➤ The term “orthonormal” matrix is rarely used.
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✍1 What is the inverse of a unitary (complex / real) matrix?

✍2 What can you say about the diagonal entries of a skew-symmetric (real) matrix?

✍3 What can you say about the diagonal entries of a Hermitian (complex) matrix?

✍4 What can you say about the diagonal entries of a skew-Hermitian (complex)
matrix?

✍5 Which matrices of the following type are also normal: real symmetric, real
skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skew-
symmetric matrices.

✍6 Find all real 2 × 2 matrices that are normal.

✍7 Show that a triangular matrix that is normal is diagonal.
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Matrices with structure

• Diagonal aij = 0 for j ̸= i. Notation :

A = diag (a11, a22, . . . , ann) .

• Upper triangular aij = 0 for i > j.

• Lower triangular aij = 0 for i < j.

• Upper bidiagonal aij = 0 for j ̸= i and j ̸= i + 1.

• Lower bidiagonal aij = 0 for j ̸= i and j ̸= i − 1.

• Tridiagonal aij = 0 when |i − j| > 1.
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• Banded aij ̸= 0 only when i−ml ≤ j ≤ i+mu, ‘Bandwidth’ = ml +mu +1.

• Upper Hessenberg aij = 0 when i > j+1. Lower Hessenberg matrices can be
defined similarly.

• Outer product A = uvT , where both u and v are vectors.

• Block tridiagonal generalizes tridiagonal matrices by replacing each nonzero entry
by a square matrix.
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Vandermonde : Given a column of entries [x0, x1, · · · , xn]
T put its (component-

wise) powers into the columns of a matrix V :

V =




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · x2

1
... ... ... ...
1 xn x2

n · · · xn
n




✍8 Try the matlab function vander

✍9 What does the matrix-vector product V a represent?

✍10 Interpret the solution of the linear system V a = y where a is the unknown.
Sketch a ‘fast’ solution method based on this.
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Toeplitz :

➤ Entries are constant along diagonals, i.e., aij = rj−i.

➤ Determined by m + n − 1 values rj−i.

T =




r0 r1 r2 r3 r4
r−1 r0 r1 r2 r3
r−2 r−1 r0 r1 r2
r−3 r−2 r−1 r0 r1
r−4 r−3 r−2 r−1 r0




︸ ︷︷ ︸
Toeplitz

➤ Toeplitz systems (m = n) can be solved in O(n2) ops.

➤ The whole inverse (!) can be determined in O(n2) ops.

✍11 Explore toeplitz(c,r) in matlab.
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Hankel : Entries are constant
along anti-diagonals, i.e., aij =

hj+i−1.
Determined by m+n− 1 values
hj+i−1.

H =




h1 h2 h3 h4 h5

h2 h3 h4 h5 h6

h3 h4 h5 h6 h7

h4 h5 h6 h7 h8

h5 h6 h7 h8 h9




︸ ︷︷ ︸
Hankel

✍12 Explore hankel(c,r) in matlab.

2-9 GvL: 2.1 – Matrices

2-9

Circulant : Entries in a row are
cyclically right-shifted to form next
row. Determined by n values.

C =




c1 c2 c3 c4 c5
c5 c1 c2 c3 c4
c4 c5 c1 c2 c3
c3 c4 c5 c1 c2
c2 c3 c4 c5 c1




︸ ︷︷ ︸
Circulant

✍13 How can you generate a circulant matrix in matlab?

✍14 If C is circulant (real) and symmetric, what can be said about the ci’s?

➤ A simple and important circulant matrix
is the up-shift matrix Sn

S5 =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0



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2-10✍15 What is the result of multiplying Sn by a vector? What are the powers of Sn?
What is the inverse of Sn?

✍16 Show that

C = c1I + c2Sn + c3S
2
3 + · · · + cnS

n−1
n

As a result show that all circulant matrices of the same size commute.

✍17 (Continuation) Use the result of the previous exercise to show that the product
of two circulant matrices is circulant.
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Sparse matrices

➤ Matrices with very few nonzero entries – so few that this can be exploited.

➤ Many of the large matrices encountered in applications are sparse.

➤ Main idea of “sparse matrix techniques” is not to represent the zeros.

➤ This will be covered in some detail at the end of the course.
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A few words on tensors

➤ A tensor is a multidimensional array
➤ An order N tensor requires N indices:

A = (ai1,i2,...,iN) ∈ Rd1×d2×···×dN

➤ Each dn is the n-th dimension of A.

➤ A vector is an order-1 tensor and a matrix is an order-2 tensor.

➤ Order 3 tensor indexed by 3 indices i1, i2, i3 or i, j, k.

➤ For each fixed i3 (or k) a:,:,i3 is a matrix - a frontal slice

➤ a(i1, i2, · · · , in−1, : , in+1, · · · , in) is a fiber (a vector) in n-th mode

✍18 How many mode n fibers are there?
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➤ Illustration [1st and 2nd in-
dices: top to bottom and left to
right, 3rd: front to back]

A =

a112 a122

a111 a121

a212 a222

a211 a221

=

5 7

1 3

6 8

2 4

➤ For above example, frontal slices are
the matrices

A1 =

(
1 3

2 4

)
A2 =

(
5 7

6 8

)

➤ The mode-2 fibers are: f1 =

(
1

3

)
, f2 =

(
2

4

)
, f3 =

(
5

7

)
, f4 =

(
6

8

)

➤ Note order: a(x, :, y) : a(1, :, 1), a(2, :, 1), a(1, :, 2), a(2, :, 2)
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➤ Unfolding of a tensor along mode n is a matrix A(n) of dimension

dn × (d1 · · · dn−1dn+1 · · · dN).

➤ Columns of A(n) are all mode n fibers of A
➤ For the above example tensor A, the three mode-n unfoldings are

A(1) =

[
1 3 5 7

2 4 6 8

]
, A(2) =

[
1 2 5 6

3 4 7 8

]
, A(3) =

[
1 2 3 4

5 6 7 8

]
.

➤ Note: In Python/Pytorch tensors are stored differently from multidimensional ar-
rays in matlab
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Mode-n Product or tensor-matrix product Given a tensor A ∈ Rd1×d2×···×dN and
a matrix M ∈ Rcn×dn, the mode-n product is a tensor

B = A ⊗n M ∈ Rd1×···×dn−1×cn×dn+1···×dN where

b(i1, . . . , in−1, jn, in+1, . . . , iN) =
dn∑

in=1

a(i1, . . . , in−1, in, in+1, . . . , iN) m(jn, in) for jn = 1, 2, . . . , cn

➤ Matrix interpretation : B(n) = MA(n).
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➤ Here are a couple of properties of tensor-matrix multiplication:

• For m ̸= n, and matrices F and G of appropriate dimensions,

(A ⊗n F ) ⊗m G = (A ⊗m G) ⊗n F.

• For any n, and for matrices F and G of appropriate dimensions,

(A ⊗n F ) ⊗n G = A ⊗n (GF ).

➤ for a general n, the mode-n product of two matrices is not defined, can safely omit
the parentheses and write (A ⊗n F ) ⊗m G as A ⊗n F ⊗m G.
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