SOLVING LINEAR SYSTEMS OF EQUATIONS

* Quick background on linear systems

* The Gaussian elimination algorithm (review)

* The LU factorization

» Gaussian Elimination with pivoting — permutation matrices.

» Case of banded systems



Background: Linear systems

The Problem: A is an n X mn matrix, and b a vector of R™. Find 2 such that:

Ax =0

» x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:
(2%, + 4xy + 4x3 = 6 244\ [z 6
{ x1 + Sx3 + 63 = 4 oOr 156 xo | = | 4
\:1:1—|—3332—|— 233:8 131 I3 8

#1| Solution of above system ?
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» Standard mathematical solution by Cramer’s rule:

x; = det(A;)/ det(A)

A; = matrix obtained by replacing z-th column by b.

» Note: This formula is useless in practice beyond n = 3 or n = 4.

Three situations: I

1. The matrix A is nonsingular. There is a unigue solution given by x = A~1b.

2. The matrix A is singular and b € Ran(A). There are infinitely many solutions.

3. The matrix A is singular and b ¢ Ran(A). There are no solutions.
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Example: |[(1) Let A = (2 O> b = <1> . A is nonsingular » a unique

04 8
. 0.5
solution £ = 5 |-

Example: |(2) Case where A is singular & b € Ran(A):

= (i1) ()

» infinitely many solutions: z(a) = <0'5> V a.

(81

1

Example: |(3) Let A same as above, but b = <1> :

» No solutions since 2nd equation cannot be satisfied
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Background. Triangular linear systems

Example:
2 4 4 T 2
0O 5 —2 xo | = | 1
0O 0 2 T3 4

» One equation can be ftrivially solved: the last one. x3 = 2

» x3 IS Known we can now solve the 2nd equation:

5Ly —2x3 =1 — B3 —2X2=1 — x53=1

» Finally ; can be determined similarly:

2c1 +4x9 +4x3 =2 — ... 5 ] = —95
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ALGORITHM : 1. Back-Substitution algorithm

Fort =n:—1:1 do:

t:= bz
Forg =1+ 1:ndo
t:=1t—a;jx; t:=b; — (ai,.i—i—lzna wz’—l—l:n)
End = b; — an inner product
x; =t/a;
End

» We must require that each a;; 7 0

» Operation count?
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Column version of back-substitution

Back-Substitution algorithm. Column version

Fory =n:—1:1do:

zj = bj/a;;
Fore =1:53 —1do
bz' = bz — L5 * Qg4
End
End

2| Justify the above algorithm [Show that it does indeed compute the solution]

» Analogous algorithms for lower triangular systems.
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Background: Gaussian Elimination

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will
transform a linear system into one that is triangular. Main operation: combine
rows so that zeros appear in the required locations to make the system

triangular.

Notation: use a Tableau:

(22, + 4xy 4+ 435 = 2 2 4 4] 2
{ ®1 4+ 33 + 1z = 1 tableau:| 1 3 1/ 1
\ I -+ 5%2 + 6%3 = —06 1 59 6| —6
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» Main operation used: scaling and adding rows.

Example: | Replace row2 by: row2 - 2*row1:

2 4 4| 2 2 4 4| 2
1 3 1.1 — |0 1 —-1/0
1 5 6/—6 1 5 6 —6
» This is equivalent to:
1 0 O 2 4 4 2 2 4 4 2
-3 1 0x 1 3 1/1 =0 1 -1 0
0O 0 1 1 5 6/ —6 1 5 6 —6

OoOnrR O

» The left-hand matrix is of the form M = I — ve] with v =
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Gaussian Elimination (cont.)

Go back to original system. Step 1 must transform:

2 4 4 2 €T r x|

1 3 1/ 1 |into:l 0 = =« =

1 5 6 —6 0 = xlx
rows = TOWy — % X rowi. TOWs := TOwWs3 — % X rows.
2 4 4| 2 2 4 4| 2
0O 1 —1 0 0O 1 —1/ 0

1 5 6 —6 0 3 4| =7
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» Equivalent to

[A, b] — [M1A7 Mlb]; Ml =TI — ’U(l)ef; ’U(l) =

NN = O

» New system A,x = b,. Step 2 must now transform:

2 4 4| 2 r T x| T
O 1 —-1/0|into:] 0 = xx
0O 3 4| —7 0O 0 xx
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rows :(=rows —3 Xrowy,:— | 0 1 —1|0

» Equivalent to

» Second transformation is as follows:

)

[A1,b1] = [M2Aq, M2bi]; My =1 — ’U(2)eg; v =

w O

» Triangular system » Solve.
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Gaussian Elimination in a picture

Pivot column
¢ a(k,k)
s

L e e m o Row k

For i=k+1:n Do:

[IIIIIIIIEE Row | piv = a(i,k)/a(k,k)
A row(i):=row(i) — piv*row(k)

| piv = a(i,k)/a(k,k)
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ALGORITHM : 2. G@Gaussian Elimination

Fork =1 :n — 1 Do:
Fortr =k + 1 :n Do:
DIV 1= aik/ ALk
Fory :=k+1:n+1Do:
aij := Q;j — PIU * Ak
End
End
End

NSO OO

» Operation count:

n—1 n n+1 n—1 n
=% Y S A=% Y em-min-..
k=1 1=k+1 1=k+1 k=1 1=k+1

#3| Complete the above calculation. Order of the cost?
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The LU factorization

» Now ignore the right-hand side and consider only A

Observation: Gaussian elimination is equivalent to n — 1 successive
Gaussian transformations, i.e., multiplications with matrices of the form M, =
I — v®el' where the first k components of v(*) equal zero.

A1 = MlAO with A() = A
A2 M2A1 M2(M1A0)
A3 M3A2 Mg(MleA())

Apq M, 1---M;Ay —

— [Mn—l"'Ml]A
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A= [M, M, ,..M]"'U = LU
L

LU decomposition : A = LU, where L is lower triangular with ones on diagonal
('Unit lower triang.), and U is upper triangular = the last matrix obtained in the
process = (A,,_1).

» Easy to get U. How do we get L? Can show:

The L factor is a lower triangular matrix with ones on the diagonal. Column k of
L, contains the multipliers [;; used in the k-th step of Gaussian elimination.

» There is an ‘algorithmic’ approach to understanding the LU factorization [see
supplemental notes]
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A matrix A has an LU decomposition iff
det(A(1:k,1:k))#0 for k=1,--- ,n — 1.
In this case: det A = det(U) = | ] w

i=1
If, in addition, A is nonsingular, then the LU factorization is unique.

# 4| Practical use: Show how to use the LU factorization to solve linear systems with
the same matrix A and different b’s.

2 4 4
#5| LU factorizationofthematrix A = |1 5 6 |? |[#6| Determinant of A?
131

#7| True or false: “Computing the LU factorization of matrix A involves more
arithmetic operations than solving a linear system Ax = b by Gaussian elimination”.
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Gaussian Elimination: Partial Pivoting

Consider again GE
for the system:

N\

\

( 22131 -+ 2232 -+ 4$3
1 + X2 + x3
x1 + 4x2 + 63

> TOWs := TOWy — % X rows.
2 4| 2
0 —1] 0
1 6 —5

» Pivot aqs is zero. Solution : permute

rows 2 and 3:
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= 2 2 4| 2
= 1 Or: 1 11
= —5 4 6|—5

» rows :— TOQUg—%X rTows .

2 2 4
O o0 -1
0O 3 4 —6

2 2 4| 2

0O 3 4 —6

O 0 -—-1|0




Gaussian Elimination with Partial Pivoting
Partial Pivoting |

» General step k shown on the right — %
Rowk| / $g
» Exchange row k with row [ where T S
Largest ‘a ik‘ é@"
|alk| = MaX;—k.....n |az'k:| R

» Do this at each step

» Yields a more ‘stable’ algorithm.

#g| The matlab script gaussp will be provided. Explore it from the angle of an actual

implementation in a language like C. Is it necessary to ‘physically’ move the rows?
(moving data around is not free).
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Pivoting and permutation matrices

» A permutation matrix is a matrix obtained from the identity matrix by permuting its
rows

» For example for the permutation = = {3, 1,4, 2} we obtain

(0010\
1000
0001
\0 100

» Important observation: the matrix P A is obtained from A by permuting its rows
with the permutation 7

(PA)z, — Aﬂ'(i),:
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#9| What is the matrix P A when

(001 0) (1234\

p_|1000| 56 78],
0001 9 0 —1 2
\0 100 \—3 4 —5 6)

» Any permutation matrix is the product of interchange permutations, which only
swap two rows of 1.

» Notation: E;; = Identity with rows ¢ and 3 swapped
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Example: |To obtain # = {3,1,4,2} from = = {1,2,3,4} — we need to
swap 7(2) <> mw(3) then w(3) <> w(4) and finally (1) <> 7 (2). Hence:

(0010\
1000
P = 000 1 = F12 X E34 X Fa3

\0 100/

#10| In the previous example where

> A= [ 12 34, 5678, 9 0-12,; -3 4 -5 0]

Matlab gives det(A) = —896. What is det(P A)?
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Obtaining the LU factorization with pivoting

» The main result is simple (though cumbersome to prove)

We end up with the factorization

PA =LU

where
m P is the permutation matrix corresponding to the accumulated swaps.

m U is the last upper triangular matrix obtained

m L is the same matrix of multipliers as before, *but* the rows are swapped when
those of the (evolving) U are.

» Best explained with examples.
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Special case of banded matrices

» Banded matrices arise in many applications
» A has upper bandwidth g if a;; =0forg — 2 > g

» A has lower bandwidth pif a;; =0forv — 3 > p

#11]| Explain how GE would work on a banded system
(you want to avoid operations involving zeros) —
Hint: see picture

» Simplest case: tridiagonal » p = q = 1.
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» First observation: Gaussian elimination (no pivoting) preserves the initial banded
form. Consider first step of Gaussian elimination:

2. Forz = 2 : n Do:

3. a;1 := a;1 /a1y (pivots)
4. Foryg :=2:nDo:

. A5 «— Q55 — Q4 *x ai;
6. End

/.

End

» If A has upper bandwidth q and lower bandwidth p then so is the resulting [L /U]
matrix. » Band form is preserved (induction)

# 12| Operation count?

4-25 GvL 3.{1,3,5} — Systems




What happens when partial pivoting is used? |

If A has lower bandwidth p, upper bandwidih g, and if Gaussian elimination with
partial pivoting is used, then the resulting U has upper bandwidth p 4+ g. L has at
most p + 1 nonzero elements per column (bandedness is lost).

» Simplest case: tridiagonal » p = q = 1.

Example:

(1100 0)
21100
A=[02110
00211
\0 0021
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