SOLVING LINEAR SYSTEMS OF EQUATIONS

* Quick background on linear systems

* The Gaussian elimination algorithm (review)

* The LU factorization

» Gaussian Elimination with pivoting — permutation matrices.

« Case of banded systems

Background: Linear systems

The Problem: A is an n X n matrix, and b a vector of R™. Find x such that:

Ax =0b

» x is the unknown vector, b the right-hand side, and A is the coefficient matrix

2(31 + 4w2 + 4:1:3 =6 2414 1
x1 + dxy + 63 = 4 or 156 o | =
T + 3Tz + T3 131 T3

I
o
® A~ o

Solution of above system ?
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» Standard mathematical solution by Cramer’s rule:

x; = det(A;)/ det(A)

A; = matrix obtained by replacing i-th column by b.

» Note: This formula is useless in practice beyond n = 3 or n = 4.

Three situations:

1. The matrix A is nonsingular. There is a unique solution given by z = A~ 'b.
2. The matrix A is singular and b € Ran(A). There are infinitely many solutions.

3. The matrix A is singular and b ¢ Ran(A). There are no solutions.
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(1) Let A = ((2) 2) b = (;) . A is nonsingular » a unique

. 0.5
solution = ( ) .
2
Example: |(2) Case where A is singular & b € Ran(A):
20 1
C o . 0.5
» infinitely many solutions: (o) = ( o ) Y a.

(3) Let A same as above, but b = (i) .

» No solutions since 2nd equation cannot be satisfied
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Background. Triangular linear systems

2 4 4 T 2
0 5 -2 2| = |1
0 0 2 T3 4

» One equation can be trivially solved: the last one. x5 = 2

» x3 is known we can now solve the 2nd equation:

5y —2x3=1 — Jx3 —2X2=1 — x3=1

» Finally x; can be determined similarly:
2x1 +4xy + 43 =2 — ... > 1 = —H
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ALGORITHM : 1« Back-Substitution algorithm

Fort =n:—1:1do:
t:= bl
Forj=t4+1:ndo
t:=t— Q;;T; t:=b; — (ai,li-i—l:na mi+1:n)
End = b; — an inner product
T; = t/aii
End

» We must require that each a;; # 0

» Operation count?
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Column version of back-substitution

Back-Substitution algorithm. Column version

Forj =mn:—1:1do:
xj = bj/ajj
Fore =1:37 —1do
bi = bi—acj*aij
End
End

Justify the above algorithm [Show that it does indeed compute the solution]

» Analogous algorithms for lower triangular systems.
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Background: Gaussian Elimination

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will
transform a linear system into one that is triangular. Main operation: combine
rows so that zeros appear in the required locations to make the system
triangular.

Notation: use a Tableau:

2x1 + 4xs + 4x3 = 2 2 4 4| 2
x1 + 3y + 1lzg = 1 tableau:| 1 3 1| 1
x1 + bxy + 63 = —6 1 5 6/—6
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» Main operation used: scaling and adding rows.

Replace row2 by: row2 - 1*row1:

Gaussian Elimination (cont.)

Go back to original system. Step 1 must transform:

2 4 42 2 4) 2 2 4 4|2 r T x|z
1 3 1]1|—=1]0 —1| 0 .
1 5 6 —6 1 6 —6 1 3 1/1 jinto:] 0 x xx
1 5 6/—6 0 =z zxx
» This is equivalent to:
1 0 0 2 4 4] 2 2 4 4] 2 rowgzzrowz—%xrowl: 7‘01173::7’011]3—%X7'O’U.l1:
-3 1 o/x/1 3 11 0 1 —-10 5 4 4] 2 2 4 4] 2
0 0 1] |1 5 6/ —6 1 5 6/—6 0o 1 -—1lo0 o 1 -—1lo0
1 5 6 —6 0o 3 4|-7
0
> The left-hand matrix is of the form M = I — ve] withv = | 3
0
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» Equivalent to
2 4 4| 2
rows:=rows—3 Xrows:— | 0 1 —1]0
} 0 O 2 4 4| 2 2 4 4| 2 0 0 77
2 N A 0 1 -10 » Equivalent to
-5 0 1 1 5 6/—6 0o 3 4|-7
1 0 O 2 4 4| 2 2 4 4| 2
0 0o 1 0x/ 0 1 —-1/0|=/0 1 —1]0
[A,b] = [M1A, Mb]; My =1—vWel; oM = |1 0 -3 1 0 3 4 -7 0 0 7 -7
1
2

» New system A;x = b;. Step 2 must now transform:
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2
0
0

4
1
3

4
-1
4

2
0
-7

into:
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» Second transformation is as follows:

==}

[A1,b1] = [M2Ay, Moby]; My =T —v®el; v = |0

w

» Triangular system » Solve.
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Gaussian Elimination in a picture

ALGORITHM : 2. Gaussian Elimination

1. Fork =1:n — 1 Do:
2 Fori =k +1:n Do:
Pivot column 3 Piv = air/ar
¢ a(k,k) 4 Forj:=k+1:n+1Do:
::,L___\_‘__ y Row k 5. Q;j 1= a;; — PIV * ay;
;’""“\" 6 End
: | o 6. End
Piv = a(ikya(kk) For i=k+1:n Do: 7. End
L i‘ _CCC :,‘I: - Row i piv = a(i,k)/a(k,k)
,", A row(i):=row(i) - piv*row(k) » Operation count:
\‘\ I n—1 n n+1 n—1 n
T=> S+ > 2= Y @n-k+3)=..
k=1 i=k+1 j=k+1 k=1 i=k+1
Complete the above calculation. Order of the cost?
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The LU factorization

» Now ignore the right-hand side and consider only A

Observation: Gaussian elimination is equivalent to n — 1 successive
Gaussian transformations, i.e., multiplications with matrices of the form M, =
I — v®el', where the first k components of v(¥) equal zero.

A1 = M1A0 with AO =A

Ag - MzAl = Mz(MlAO)

A3 = M3A2 = M3(M2M1A0)
Ay 1 =My y--- M{Ay —

U == [Mn—l e Ml]A
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A=[M, M, ».M|'U=LU
L

LU decomposition : A = LU, where L is lower triangular with ones on diagonal
(’Unit lower triang.), and U is upper triangular = the last matrix obtained in the
process = (Ap—1).

» Easy to get U. How do we get L? Can show:

The L factor is a lower triangular matrix with ones on the diagonal. Column k of
L, contains the multipliers l;; used in the k-th step of Gaussian elimination.

» There is an ‘algorithmic’ approach to understanding the LU factorization [see
supplemental notes]
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A matrix A has an LU decomposition iff
det(A(1:k,1:k))#0 for k=1,---,n—1.
In this case: det A = det(U) = [ [ w

=1
If, in addition, A is nonsingular, then the LU factorization is unique.

Practical use: Show how to use the LU factorization to solve linear systems with
the same matrix A and different b’s.

2414
LU factorization of the matrix A = |1 5 6 | ? Determinant of A?
131

True or false: “Computing the LU factorization of matrix A involves more
arithmetic operations than solving a linear system Ax = b by Gaussian elimination”.
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Gaussian Elimination: Partial Pivoting

Consider again GE 2z + 2xy + dwz = 2 2 2
for the system: 1+ @+ xz3= 101 1 1|1
> TOoOWws = rows — % X rowsi: > rows := rows — % X row;:
2 2 42 2 2 4] 2
0 0 —1]0 0 0 -1/0

» Pivot ass is zero. Solution : permute
rows 2 and 3:
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Gaussian Elimination with Partial Pivoting

Partial Pivoting

> General step k shown on the right —» Ak
Rowk| @
» Exchange row k with row I where I e’
Largest ‘a ik‘ B >
|| = max;—y,....n |@ix| R

» Do this at each step

> Yields a more ‘stable’ algorithm.

The matlab script gaussp will be provided. Explore it from the angle of an actual
implementation in a language like C. Is it necessary to ‘physically’ move the rows?
(moving data around is not free).

4-19 GvL 3.{1,3,5} — Systems

Pivoting and permutation matrices

» A permutation matrix is a matrix obtained from the identity matrix by permuting its
rows

» For example for the permutation = = {3, 1, 4, 2} we obtain

0010
1000
0001
0100

» Important observation: the matrix P A is obtained from A by permuting its rows
with the permutation =

(PA)i: = Az,
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What is the matrix P A when

0010 1 2 3 4
1000 5 6 7 8
P 0001 A 9 0 —-12
0100 —34—-56

» Any permutation matrix is the product of interchange permutations, which only
swap two rows of I.

> Notation: E;; = Identity with rows ¢ and j swapped
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To obtain # = {3,1,4,2} from =« = {1,2,3,4} — we need to

swap w(2) <> w(3) then w(3) +» w(4) and finally w(1) > 7 (2). Hence:

0010

1000
P = 0001 :E1,2XE3’4XE2’3

0100
In the previous example where
> A =[1234; 56 78; 9 0-12,; -3 4-50256]

Matlab gives det(A) = —896. What is det(PA)?
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Obtaining the LU factorization with pivoting

» The main result is simple (though cumbersome to prove)

We end up with the factorization

PA =LU

where
m P is the permutation matrix corresponding to the accumulated swaps.
m U is the last upper triangular matrix obtained

m L is the same matrix of multipliers as before, *but* the rows are swapped when
those of the (evolving) U are.

» Best explained with examples.
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Special case of banded matrices

» Banded matrices arise in many applications
» A has upper bandwidth g if a;; =0forj —i > g

» A has lower bandwidth pif a;; =0 fori —j > p

Explain how GE would work on a banded system
(you want to avoid operations involving zeros) —

Hint: see picture
N

» Simplest case: tridiagonal » p = q = 1.
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» First observation: Gaussian elimination (no pivoting) preserves the initial banded
form. Consider first step of Gaussian elimination:

2. Fort =2 : n Do:

3. a;1 := a;1/a1; (pivots)
4. Forj:=2:nDo:

5. Qij 1= Q;; — Qi1 * Qg
6. End

7.

End

> If A has upper bandwidth g and lower bandwidth p then so is the resulting [L /U]
matrix. » Band form is preserved (induction)

Operation count?
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What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth g, and if Gaussian elimination with
partial pivoting is used, then the resulting U has upper bandwidth p 4+ g. L has at
most p + 1 nonzero elements per column (bandedness is lost).

» Simplest case: tridiagonal » p = q = 1.

11000
21100
A=102110
00211
00021
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