
FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

• Brief review of floating point arithmetic

• Model of floating point arithmetic

• Notation, backward and forward errors

5-1

Roundoff errors and floating-point arithmetic

➤ The basic problem: The set A of all possible representable numbers on a given
machine is finite - but we would like to use this set to perform standard arithmetic
operations (+,*,-,/) on an infinite set. The usual algebra rules are no longer satisfied
since results of operations are rounded.

➤ Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

a + (b + c) ! = (a + b) + c

✍1 Matlab experiment: For 10,000 random numbers find number of instances when
the above is true. Same thing for the multiplication..

5-2 GvL 2.7 – Float

5-2Floating point representation:

Real numbers are represented in two parts: A mantissa (significand) and an expo-
nent. If the representation is in the base β then:

x = ±(.d1d2 · · · dt)β
e

➤ .d1d2 · · · dt is a fraction in the base-β representation (Generally the form is nor-
malized in that d1 ̸= 0), and e is an integer

➤ Often, more convenient to rewrite the above as:

x = ±(m/βt)× βe ≡ ±m× βe−t

➤ Mantissa m is an integer with 0 ≤ m ≤ βt − 1.

5-3 GvL 2.7 – Float

5-3

Machine precision - machine epsilon

➤ Notation : fl(x) = closest floating point representation of real number x

(’rounding’)

➤ When a number x is very small, there is a point when 1 + x == 1 in a machine
sense. The computer no longer makes a difference between 1 and 1 + x.

Machine epsilon: The smallest number ϵ such that 1+ϵ is a float that is different

from one, is called machine epsilon. Denoted by macheps or eps, it represents the
distance from 1 to the next larger floating point number.

➤ With previous representation, eps is equal to β−(t−1).

5-4 GvL 2.7 – Float

5-4

Example: In IEEE standard double precision, β = 2, and t = 53 (includes
‘hidden bit’). Therefore eps = 2−52.

Unit Round-off A real number x can be approximated by a floating number fl(x)
with relative error no larger than u = 1

2
β−(t−1).

➤ u is called Unit Round-off.

➤ In fact can easily show:

fl(x) = x(1 + δ) with |δ| < u

✍2 Matlab experiment: find the machine epsilon on your computer.

➤ What conditions/ rules should be satisfied by floating point arithmetic? The IEEE
standard is a set of standards adopted by many CPU manufacturers.

5-5 GvL 2.7 – Float

5-5

Among IEEE rules:

Rule 1. fl(x) = x(1 + ϵ), where |ϵ| ≤ u

Rule 2. fl(x⊙ y) = (x⊙ y)(1 + ϵ⊙), where |ϵ⊙| ≤ u
for⊙ =

+,−, ∗, /

Rule 3. For +, ∗ operations: fl(a⊙ b) = fl(b⊙ a)

✍3 Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly gener-
ated numbers ai, bi.

5-6 GvL 2.7 – Float

5-6Example: Consider the sum of 3 numbers: y = a + b + c.

➤ Done as fl(a + b + c) = fl(fl(a + b) + c)

fl(a + b) = (a + b)(1 + ϵ1)

fl(a + b + c) = [(a + b)(1 + ϵ1) + c] (1 + ϵ2)

= a(1 + ϵ1)(1 + ϵ2) + b(1 + ϵ1)(1 + ϵ2) + c(1 + ϵ2)

= a(1 + θ1) + b(1 + θ2) + c(1 + θ3)

with 1 + θ1 = 1 + θ2 = (1 + ϵ1)(1 + ϵ2) and 1 + θ3 = (1 + ϵ2)

➤ For a longer sum we would have something like:

1 + θj = (1 + ϵ1)(1 + ϵ2)(· · ·)(1 + ϵn−j)

We will study such products shortly

5-7 GvL 2.7 – Float

5-7

➤ Remark on order of the sum. If y1 = fl(fl(a + b) + c):

y1 = [(a + b + c) + (a + b)ϵ1)] (1 + ϵ2)

= (a + b + c)

[
1 +

a + b

a + b + c
ϵ1(1 + ϵ2) + ϵ2

]

So disregarding the high order term ϵ1ϵ2

fl(fl(a + b) + c) = (a + b + c)(1 + ϵ3)

ϵ3 ≈
a + b

a + b + c
ϵ1 + ϵ2

5-8 GvL 2.7 – Float

5-8

➤ If we redid the computation as y2 = fl(a + fl(b + c)) we would find

fl(a + fl(b + c)) = (a + b + c)(1 + ϵ4)

ϵ4 ≈
b + c

a + b + c
ϵ1 + ϵ2

➤ The error is amplified by the factor (a + b)/y in the first case and (b + c)/y in
the second case.

➤ In order to sum n numbers accurately, it is better to start with small numbers first.
[However, sorting before adding is not worth it.]

➤ But watch out if the numbers have mixed signs!

5-9 GvL 2.7 – Float

5-9

The absolute value notation

➤ For a given vector x, |x| is the vector with components |xi|, i.e., |x| is the
component-wise absolute value of x.

➤ Similarly for matrices: |A| = {|aij|}i=1,...,m; j=1,...,n

➤ An obvious result: The basic inequality

|fl(aij)− aij| ≤ u |aij|

translates into |fl(A)−A| ≤ u |A|

➤ A ≤ B means aij ≤ bij for all 1 ≤ i ≤ m; 1 ≤ j ≤ n

5-10 GvL 2.7 – Float

5-10Backward and forward errors

➤ Assume the approximation ŷ to y = F(x) is computed by some algorithm with
arithmetic precision ϵ. Possible analysis: find an upper bound for the Forward error

∥∆y∥ = ∥y − ŷ∥

➤ Called Forward error analysis. This is not always easy.

Alternative question: Find smallest equivalent perturbation on initial data (x)
that produces (exactly) the result ŷ:

F(x + ∆x) = ŷ

➤ The smallest value of ∥∆x∥ s.t. above is satisfied is called the backward error.
An analysis to find this eror is called Backward error analysis.

5-11 GvL 2.7 – Float

5-11

∆x+ x
∆x+ xF()

y = F(x)

ŷ
=

x

Exact

Backward

Error
Error

Forward

Exact

Computed

Formal definition η(ŷ) = min{ϵ|ŷ = F (x + ∆x) ∥∆x∥ ≤ ϵ}

Note: In practice backward errors may be more meaningful than forward errors: if
initial data is accurate only to 4 digits say, then my algorithm for computing x need
not be required to produce a backward error of less then 10−10 for example. A
backward error of order 10−4 is sufficient.

5-12 GvL 2.7 – Float

5-12

Error Analysis: Inner product

➤ The following lemma helps with analysis of inner products.

Lemma: If |δi| ≤ u and nu < 1 then

Πn
i=1(1 + δi) = 1 + θn where |θn| ≤

nu

1− nu

➤ Common notation γn ≡ nu
1−nu

✍4 Prove the lemma [Hint: use induction]

5-13 GvL 2.7 – Float

5-13

Example: Previous sum of numbers can be written

fl(a + b + c) = fl(fl(a + b) + c)

= [(a + b)(1 + ϵ1) + c] (1 + ϵ2)

= a(1 + ϵ1)(1 + ϵ2) + b(1 + ϵ1)(1 + ϵ2) + c(1 + ϵ2)

= a(1 + θ1) + b(1 + θ2) + c(1 + θ3)

= exact sum of slightly perturbed inputs,

where all θi’s satisfy |θi| ≤ γn (here n = 2)

➤ Backward error result (output is exact sum of perturbed input)

➤ Alternatively, can write ‘forward’ bound:
|fl(a + b + c)− (a + b + c)| ≤ |aθ1|+ |bθ2|+ |cθ3|.

(bound on | output - exact sum |)

5-14 GvL 2.7 – Float

5-14Analysis of inner products (cont.)

Consider sn = fl(x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn)

➤ In what follows ηi’s come from ∗, ϵi’s come from +

➤ They satisfy: |ηi| ≤ u and |ϵi| ≤ u .

➤ The inner product sn is computed as:

1. s1 = fl(x1y1) = (x1y1)(1 + η1)

2. s2 = fl(s1 + fl(x2y2)) = fl(s1 + x2y2(1 + η2))

= (x1y1(1 + η1) + x2y2(1 + η2)) (1 + ϵ2)

= x1y1(1 + η1)(1 + ϵ2) + x2y2(1 + η2)(1 + ϵ2)

3. s3 = fl(s2 + fl(x3y3)) = fl(s2 + x3y3(1 + η3))

= (s2 + x3y3(1 + η3))(1 + ϵ3)

5-15 GvL 2.7 – Float

5-15

Expand: s3 = x1y1(1 + η1)(1 + ϵ2)(1 + ϵ3)

+x2y2(1 + η2)(1 + ϵ2)(1 + ϵ3)

+x3y3(1 + η3)(1 + ϵ3)

➤ Induction would show that [with convention that ϵ1 ≡ 0]

sn =
n∑

i=1

xiyi(1 + ηi)
n∏

j=i

(1 + ϵj)

Q: How many terms in the coefficient of xiyi do we have?

A:
• When i > 1 : 1 + (n− i + 1) = n− i + 2

• When i = 1 : n (since ϵ1 = 0 does not count)

➤ Bottom line: always≤ n.

5-16 GvL 2.7 – Float

5-16

➤ For each of these products

(1 + ηi)
∏n

j=i(1 + ϵj) = 1 + θi, with |θi| ≤ γn so:

sn =
∑n

i=1 xiyi(1 + θi) with |θi| ≤ γn or:

fl
(∑n

i=1 xiyi

)
=
∑n

i=1 xiyi +
∑n

i=1 xiyiθi with |θi| ≤ γn

➤ This leads to the final result (forward form)
∣∣∣∣∣fl

(
n∑

i=1

xiyi

)
−

n∑

i=1

xiyi

∣∣∣∣∣ ≤ γn

n∑

i=1

|xi||yi|

➤ or (backward form)

fl

(
n∑

i=1

xiyi

)
=

n∑

i=1

xiyi(1 + θi) with |θi| ≤ γn

5-17 GvL 2.7 – Float

5-17

✍5 Show for any x, y, there
exist ∆x,∆y such that:

fl(xTy) = (x + ∆x)Ty, with |∆x| ≤ γn|x|
fl(xTy) = xT (y + ∆y), with |∆y| ≤ γn|y|

✍6 Let A ∈ Rm×n, x ∈
Rn, y = Ax. Show that
there exist a matrix ∆A s.t.

fl(y) = (A + ∆A)x, with |∆A| ≤ γn|A|

✍7 From the above derive a result about a column of the product of two matrices
A and B. Does a similar result hold for the product AB as a whole?

✍8 Assume you use single precision for which you have u = 2. × 10−6. What is
the largest n for which we have γn ≤ 0.01? Any conclusions for the use of single
precision arithmetic?

✍9 What does the main result on inner products imply for the case when y = x?
[Contrast the relative accuracy you get in this case vs. the general case when y ̸= x]

5-18 GvL 2.7 – Float

5-18Recap: Main results on inner products:

➤ Forward error expression: |fl(xTy)− xTy| ≤ γn |x|T |y|

➤ Consequence for matrix products:
(A ∈ Rm×n, B ∈ Rn×p)

|fl(AB)−AB| ≤ γn |A||B|

➤ Backward error
expression:

fl(xTy) = [x .∗ (1 + dx)]
T [y .∗ (1 + dy)]

where ∥d□∥∞ ≤ γn, □ = x, y. Equality valid even if one of the dx, dy absent

5-19 GvL 2.7 – Float

5-19

Error Analysis for linear systems: Triangular systems

➤ Recall:

ALGORITHM : 1 Back-Substitution algorithm

For i = n : −1 : 1 do:
t := bi
For j = i + 1 : n do 


t := t− (ai,i+1:n, xi+1:n)

= t− an inner product
t := t− aijxj

End
xi = t/aii

End

➤ Requirement: each aii must be ̸= 0.

➤ Round-off error (use previous results for (·, ·))?
5-20 GvL 2.7 – Float

5-20

➤ Backward error analysis: x̂ = computed x solves a slightly perturbed system

The computed solution x̂ of the triangular system Ux = b computed by the back-
substitution algorithm satisfies:

(U + E)x̂ = b

with

|E| ≤ n u |U |+ O(u 2)

➤ Remarkable result: Backward error |E| is small relative to |U | - unless n is huge

➤ It is said that triangular solve is “backward stable”.

5-21 GvL 2.7 – Float

5-21

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then
the computed factors L̂ and Û satisfy

L̂Û = A + H

with |H| ≤ 3(n− 1) × u
(
|A|+ |L̂| |Û |

)
+ O(u 2)

➤ Solution x̂ computed via L̂ŷ = b and Û x̂ = ŷ is s. t.

(A + E)x̂ = b with|E| ≤ nu
(
3|A| + 5 |L̂| |Û |

)
+ O(u 2)

5-22 GvL 2.7 – Float

5-22

➤ “Backward” error estimate.

➤ |L̂| and |Û | are not known in advance – they can be large.

➤ What if partial pivoting is used?

➤ Equivalent to standard LU on matrix PA. Permutations introduce no errors

➤ |L̂| is small since |lij| ≤ 1. Therefore, only U is “uncertain”

➤ In practice partial pivoting is “stable” – i.e., highly unlikely to have a very large U .

5-23 GvL 2.7 – Float

5-23

Supplemental notes: Floating Point Arithmetic

[For information only – Will *not* be covered in class]

In most computing systems, real numbers are
represented in two parts: A mantissa and an
exponent. In base β:

x = ±(.d1d2 · · · dm)ββ
e

➤ .d1d2 · · · dm is a fraction in the base-β representation

➤ e is an integer - can be negative, positive or zero.

➤ Generally the form is normalized in that d1 ̸= 0.

Example: In base 10 (for illustration only - no base 10 computers)

1. 1000.12345 can be written as 0.10001234510 × 104

2. 0.000812345 can be written as 0.81234510 × 10−3

5-24 GvL 2.7 – FloatSuppl

5-24

➤ Problem with floating point arithmetic: we have to live with limited precision.

Example: Assume that we have only 5 digits of accuray in the mantissa and 2
digits for the exponent (excluding sign).

.d1 d2 d3 d4 d5 e1 e2

➤ Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

1000.2 = .1 0 0 0 2 0 4 ; 1.07 = .1 0 7 0 0 0 1

First task: align decimal points. The one with smallest exponent will be (inter-
nally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 × 104

5-25

Second task: add mantissas:
0. 1 0 0 0 2

+ 0. 0 0 0 1 0 7
= 0. 1 0 0 1 2 7

Third task: round result. Result has 6 digits - can use only 5 so we can:

➤ Chop result: .1 0 0 1 2 ; or Round result: .1 0 0 1 3 ;

Fourth task: Normalize result if needed (not needed here)

Result with rounding: .1 0 0 1 3 0 4 ;

✍10 Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

5-26 GvL 2.7 – FloatSuppl

5-26The IEEE standard

32 bit (Single precision) :

± 8 bits ← 23 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

➤ Number is scaled so it is in the form 1.d1d2...d23 × 2e - but leading one is not
represented.

➤ e is between -126 and 127.

➤ [Here is why: Internally, exponent e is represented in “biased” form: what is
stored is actually c = e+127 – so the value c of exponent field is between 1 and
254. The values c = 0 and c = 255 are for special cases (0 and∞)]

5-27 GvL 2.7 – FloatSuppl

5-27

64 bit (Double precision) :

± 11 bits ← 52 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

➤ Bias of 1023 so if e is the actual exponent the content of the exponent field is
c = e + 1023

➤ Largest exponent: 1023; Smallest = -1022.

➤ c = 0 and c = 2047 (all ones) are again for 0 and∞
➤ Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one
hidden).

➤ In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

5-28 GvL 2.7 – FloatSuppl

5-28

✍11 Take the number 1.0 and see what will happen if you add 1/2, 1/4,, 2−i.
Do not forget the hidden bit!

Hidden bit (Not represented)
Expon. ↓ ← 52 bits →

e 1 1 0 0 0 0 0 0 0 0 0 0
e 1 0 1 0 0 0 0 0 0 0 0 0
e 1 0 0 1 0 0 0 0 0 0 0 0

.......
e 1 0 0 0 0 0 0 0 0 0 0 1
e 1 0 0 0 0 0 0 0 0 0 0 0

(Note: The ’e’ part has 12 bits and includes the sign)

➤ Conclusion

fl(1 + 2−52) ̸= 1 but: fl(1 + 2−53) == 1 !!

5-29 GvL 2.7 – FloatSuppl

5-29

Special Values

➤ Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

➤ Allow for unnormalized numbers,
leading to gradual underflow.

➤ Exponent field = 11111111111 (largest possible value)
Number represented is ”Inf” ”-Inf” or ”NaN”.

5-30 GvL 2.7 – FloatSuppl

5-30Recent trend: GPUs

➤ Graphics Processor Units: Very fast boards attached to CPUs for heavy-duty
computing

➤ e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops = 1012 operations per
second) for certain types of computations.

➤ Single precision much faster than double ...

➤ ... and there is also “half-precision” which is≈ 16 times faster than standard 64bit
arithmetic

➤ Used primarily for Deep-learning

5-31 GvL 2.7 – FloatSuppl

5-31

