
ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF

LINEAR EQUATIONS

• Conditioning of linear systems.

• Estimating errors for solutions of linear systems

• (Normwise) Backward error analysis

• Estimating condition numbers ..
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Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the
solution x when the data, namely A and b, undergoes small variations. Problem is
Ill-conditioned if small variations in data cause very large variation in the solution.

Setting:

➤ We perturb A into A + E and b into b + eb. Can we bound the resulting change
(perturbation) to the solution?

Preparation: We begin with a lemma for a simple case
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Rigorous norm-based error bounds

LEMMA 1: If ∥E∥ < 1 then I − E is nonsingular and

∥(I − E)−1∥ ≤ 1
1−∥E∥

Proof is based on following 5 steps

a) Show: If ∥E∥ < 1 then I − E is nonsingular

b) Show: (I − E)(I + E + E2 + · · · + Ek) = I − Ek+1.

c) From which we get:

(I − E)−1 =
k∑

i=0

Ei + (I − E)−1Ek+1 →
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d) (I − E)−1 = limk→∞
∑k

i=0 E
i. We write this as

(I − E)−1 =
∞∑
i=0

Ei

e) Finally:

∥(I − E)−1∥ =

∥∥∥∥∥ limk→∞

k∑
i=0

Ei

∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥
k∑

i=0

Ei

∥∥∥∥∥
≤ lim

k→∞

k∑
i=0

∥∥∥Ei
∥∥∥ ≤ lim

k→∞

k∑
i=0

∥E∥i

≤
1

1 − ∥E∥
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➤ Can generalize result:

LEMMA 2: If A is nonsingular and ∥A−1∥ ∥E∥ < 1 then A + E is non-singular
and

∥(A + E)−1∥ ≤ ∥A−1∥
1−∥A−1∥ ∥E∥

➤ Proof is based on relation A + E = A(I + A−1E) and use of previous lemma.

➤ Now we can prove the main theorem:

THEOREM 1: Assume that (A + E)y = b + eb and Ax = b and that
∥A−1∥∥E∥ < 1. Then A + E is nonsingular and

∥x − y∥
∥x∥

≤
∥A−1∥ ∥A∥

1 − ∥A−1∥ ∥E∥

(∥E∥
∥A∥

+
∥eb∥
∥b∥

)
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Proof: From (A + E)y = b + eb and Ax = b we get
(A + E)(y − x) = eb − Ex. Hence:

y − x = (A + E)−1(eb − Ex)

Taking norms → ∥y − x∥ ≤ ∥(A + E)−1∥ [∥eb∥ + ∥E∥∥x∥]
➤ Dividing by ∥x∥ and using result of lemma

∥y − x∥
∥x∥

≤ ∥(A + E)−1∥ [∥eb∥/∥x∥ + ∥E∥]

≤
∥A−1∥

1 − ∥A−1∥∥E∥
[∥eb∥/∥x∥ + ∥E∥]

≤
∥A−1∥∥A∥

1 − ∥A−1∥∥E∥

[ ∥eb∥
∥A∥∥x∥

+
∥E∥
∥A∥

]
Result follows by using inequality ∥A∥∥x∥ ≥ ∥b∥.... QED
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The quantity κ(A) = ∥A∥ ∥A−1∥ is called the condition number of the
linear system with respect to the norm ∥.∥. Thus, for p-norms we write:

κp(A) = ∥A∥p∥A−1∥p

➤ Note: κ2(A) = σmax(A)/σmin(A) = ratio of largest to smallest singular values

➤ Determinant *is not* a good indication of sensitivity. Small eigenvalues *do not*
always give a good indication of poor conditioning.

Example: Consider, for a large α, the n × n matrix A = I + αe1e
T
n

➤ Inverse of A is : A−1 = I − αe1e
T
n ➤ For the ∞-norm we have

∥A∥∞ = ∥A−1∥∞ = 1 + |α| −→ κ∞(A) = (1 + |α|)2.

➤ κ∞(A) is large for large α – but all the eigenvalues of A are equal to one.
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✍1 Show that κ(I) = 1 ;

✍2 Show that κ(A) ≥ 1 ;

✍3 Show that κ(A) = κ(A−1)

✍4 Show that for α ̸= 0, we have κ(αA) = κ(A)

✍5 (Alternative form of Theorem 1). Assume that ∥E∥/∥A∥ ≤ δ and ∥eb∥/∥b∥ ≤
δ and δκ(A) < 1. Show:

∥x − y∥
∥x∥

≤
2δκ(A)

1 − δκ(A)
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➤ Let us revisit Theorem 1:
Simplification when eb = 0 :

∥x − y∥
∥x∥

≤
∥A−1∥ ∥E∥

1 − ∥A−1∥ ∥E∥

Simplification when E = 0 :

∥x − y∥
∥x∥

≤ ∥A−1∥ ∥A∥
∥eb∥
∥b∥

Another common form:

THEOREM 2: Let (A + ∆A)y = b + ∆b and Ax = b where ∥∆A∥ ≤ ϵ∥E∥,
∥∆b∥ ≤ ϵ∥eb∥, and assume that ϵ∥A−1∥∥E∥ < 1. Then

∥x − y∥
∥x∥

≤
ϵ ∥A−1∥ ∥A∥

1 − ϵ∥A−1∥ ∥E∥

(∥eb∥
∥b∥

+
∥E∥
∥A∥

)
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Normwise backward error

➤ We solve Ax = b and find an approximate solution y

Question: Find smallest perturbation to apply to A, b so that *exact* solution of
perturbed system is y

➤ Formally:

For a given y and given perturbation directions E, eb, we define the Normwise
backward error:

ηE,eb(y) = min{ϵ | (A + ∆A)y = b + ∆b;

where ∆A,∆b satisfy: ∥∆A∥ ≤ ϵ∥E∥;
and ∥∆b∥ ≤ ϵ∥eb∥}
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➤ In other words ηE,eb(y) is the smallest ϵ for which

(1)

{
(A + ∆A)y = b + ∆b;

∥∆A∥ ≤ ϵ∥E∥; ∥∆b∥ ≤ ϵ∥eb∥

➤ y is given (a computed solution). E and eb to be selected (most likely ’directions
of perturbation for A and b’).

➤ Typical choice: E = A, eb = b

✍6 Explain why this is not unreasonable

Let r = b − Ay. Then we have:

THEOREM 3: ηE,eb(y) = ∥r∥
∥E∥∥y∥+∥eb∥

Normwise backward error is for case E = A, eb = b: ηA,b(y) = ∥r∥
∥A∥∥y∥+∥b∥
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✍7 Show how this can be used in practice as a means to stop some iterative method
which computes a sequence of approximate solutions to Ax = b.

✍8 Consider the 6 × 6 Vandermonde system Ax = b where aij = j2(i−1),
b = A ∗ [1, 1, · · · , 1]T . We perturb A by E, with |E| ≤ 10−10|A| and b similarly
and solve the system. Evaluate the backward error for this case. Evaluate the forward
bound provided by Theorem 2. Comment on the results.
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Estimating condition numbers.

➤ Often we just want to get a lower bound for condition number [it is ‘worse than ...’]

➤ We want to estimate ∥A∥ ∥A−1∥.

➤ The norm ∥A∥ is usually easy to compute but ∥A−1∥ is not.

➤ We want: Avoid the expense of computing A−1 explicitly.

Idea: Select a vector v so that ∥v∥ = 1 but ∥Av∥ = τ is small.

➤ Then: ∥A−1∥ ≥ 1/τ (show why) and: κ(A) ≥ ∥A∥
τ

➤ More generally: ∥A−1∥ ≥ ∥v∥
∥Av∥ and so: κ(A) ≥ ∥A∥∥v∥

∥Av∥
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➤ Condition number worse than ∥A∥/τ .

➤ Typical choice for v: choose [· · ·±1 · · · ] with signs chosen on the fly during back-
substitution to maximize the next entry in the solution, based on the upper triangular
factor from Gaussian Elimination.

➤ Similar techniques used to estimate condition numbers of large matrices in matlab.
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Condition numbers and near-singularity

➤ 1/κ ≈ relative distance to nearest singular matrix.

Let A,B be two n × n matrices with A nonsingular and B singular. Then

1

κ(A)
≤

∥A − B∥
∥A∥

Proof: B singular → ∃ x ̸= 0 such that Bx = 0.

∥x∥ = ∥A−1Ax∥ ≤ ∥A−1∥ ∥Ax∥ = ∥A−1∥∥(A − B)x∥
≤ ∥A−1∥ ∥A − B∥∥x∥

Divide both sides by ∥x∥ × κ(A) = ∥x∥∥A∥ ∥A−1∥ ➤ result. QED.
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Example:

let A =

(
1 1

1 0.99

)
and B =

(
1 1

1 1

)
Then 1

κ1(A)
≤ 0.01

2
➤ κ1(A) ≥ 2

0.01
= 200.

➤ It can be shown that (Kahan)

1

κ(A)
= min

B

{∥A − B∥
∥A∥

| det(B) = 0

}
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Estimating errors from residual norms

Let x̃ an approximate solution to system Ax = b (e.g., computed from an iterative
process). We can compute the residual norm:

∥r∥ = ∥b − Ax̃∥

Question: How to estimate the error ∥x − x̃∥ from ∥r∥?

➤ A simple option is to use the inequality (Show
this from Theorem 1 with E = 0):

∥x−x̃∥
∥x∥ ≤ κ(A) ∥r∥

∥b∥.

➤ We must have an estimate of κ(A).

✍9 Show that
∥x−x̃∥
∥x∥ ≥ 1

κ(A)
∥r∥
∥b∥.
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