ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS

- Conditioning of linear systems.
- Estimating errors for solutions of linear systems
- (Normwise) Backward error analysis
- Estimating condition numbers ...

Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the solution x when the data, namely A and b, undergoes small variations. Problem is III-conditioned if small variations in data cause very large variation in the solution.

Setting:

 \blacktriangleright We perturb A into A+E and b into $b+e_b$. Can we bound the resulting change (perturbation) to the solution?

Preparation: We begin with a lemma for a simple case

Rigorous norm-based error bounds

LEMMA 1: If $\|E\| < 1$ then I - E is nonsingular and

$$\|(I-E)^{-1}\| \leq \frac{1}{1-\|E\|}$$

Proof is based on following 5 steps

a) Show: If $\|E\| < 1$ then I - E is nonsingular

b) Show: $(I - E)(I + E + E^2 + \cdots + E^k) = I - E^{k+1}$.

c) From which we get:

$$(I-E)^{-1} = \sum_{i=0}^k E^i + (I-E)^{-1}E^{k+1} o$$

6-3

d) $(I-E)^{-1}=\lim_{k o\infty}\sum_{i=0}^k E^i$. We write this as

$$(I-E)^{-1}=\sum_{i=0}^\infty E^i$$

e) Finally:

$$\|(I - E)^{-1}\| = \left\|\lim_{k \to \infty} \sum_{i=0}^{k} E^{i}\right\| = \lim_{k \to \infty} \left\|\sum_{i=0}^{k} E^{i}\right\|$$
 $\leq \lim_{k \to \infty} \sum_{i=0}^{k} \left\|E^{i}\right\| \leq \lim_{k \to \infty} \sum_{i=0}^{k} \|E\|^{i}$
 $\leq \frac{1}{1 - \|E\|}$

6-4

Can generalize result:

LEMMA 2: If A is nonsingular and $\|A^{-1}\| \ \|E\| < 1$ then A + E is non-singular and

$$\|(A+E)^{-1}\| \leq rac{\|A^{-1}\|}{1-\|A^{-1}\| \; \|E\|}$$

- \blacktriangleright Proof is based on relation $A+E=A(I+A^{-1}E)$ and use of previous lemma.
- ➤ Now we can prove the main theorem:

<code>THEOREM 1:</code> Assume that $(A+E)y=b+e_b$ and Ax=b and that $\|A^{-1}\|\|E\|<1.$ Then A+E is nonsingular and

$$rac{\|m{x}-m{y}\|}{\|m{x}\|} \leq rac{\|m{A}^{-1}\| \ \|m{A}\|}{1-\|m{A}^{-1}\| \ \|m{E}\|} \left(rac{\|m{E}\|}{\|m{A}\|} + rac{\|m{e}_b\|}{\|m{b}\|}
ight)$$

Proof: From $(A + E)y = b + e_b$ and Ax = b we get $(A + E)(y - x) = e_b - Ex$. Hence:

$$y-x=(A+E)^{-1}(e_b-Ex)^{-1}$$

Taking norms $\to \|y-x\| \le \|(A+E)^{-1}\| [\|e_b\| + \|E\|\|x\|]$

ightharpoonup Dividing by ||x|| and using result of lemma

$$egin{aligned} rac{\|y-x\|}{\|x\|} & \leq \|(A+E)^{-1}\| \, [\|e_b\|/\|x\|+\|E\|] \ & \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|E\|} \, [\|e_b\|/\|x\|+\|E\|] \ & \leq rac{\|A^{-1}\|\|A\|}{1-\|A^{-1}\|\|E\|} \, \Big[rac{\|e_b\|}{\|A\|\|x\|}+rac{\|E\|}{\|A\|}\Big] \end{aligned}$$

Result follows by using inequality $||A|| ||x|| \ge ||b||$

QED

6-6

The quantity $\kappa(A) = \|A\| \|A^{-1}\|$ is called the condition number of the linear system with respect to the norm $\|.\|$. Thus, for p-norms we write:

$$\kappa_p(A) = \|A\|_p \|A^{-1}\|_p$$

- Note: $\kappa_2(A) = \sigma_{max}(A)/\sigma_{min}(A)$ = ratio of largest to smallest singular values
- ➤ Determinant *is not* a good indication of sensitivity. Small eigenvalues *do not* always give a good indication of poor conditioning.

Example: Consider, for a large α , the $n \times n$ matrix $A = I + \alpha e_1 e_n^T$

ightharpoonup Inverse of A is : $A^{-1}=I-lpha e_1e_n^T$ ightharpoonup For the ∞ -norm we have

$$\|A\|_{\infty}=\|A^{-1}\|_{\infty}=1+|lpha|\longrightarrow \quad \kappa_{\infty}(A)=(1+|lpha|)^2.$$

 $\triangleright \kappa_{\infty}(A)$ is large for large α – but all the eigenvalues of A are equal to one.

- Show that $\kappa(I) = 1$;
- Show that $\kappa(A) = \kappa(A^{-1})$
- Show that for $\alpha \neq 0$, we have $\kappa(\alpha A) = \kappa(A)$
- [Alternative form of Theorem 1). Assume that $||E||/||A|| \le \delta$ and $||e_b||/||b|| \le \delta$ and $\delta \kappa(A) < 1$. Show:

$$rac{\|x-y\|}{\|x\|} \leq rac{2\delta\kappa(A)}{1-\delta\kappa(A)}$$

➤ Let us revisit Theorem 1:

Simplification when $e_b=0$:

$$rac{\|x-y\|}{\|x\|} \leq rac{\|A^{-1}\| \, \|E\|}{1-\|A^{-1}\| \, \|E\|}$$

Simplification when $oldsymbol{E}=\mathbf{0}$:

$$rac{\|x-y\|}{\|x\|} \leq \|A^{-1}\| \ \|A\| rac{\|e_b\|}{\|b\|}$$

Another common form:

THEOREM 2: Let $(A+\Delta A)y=b+\Delta b$ and Ax=b where $\|\Delta A\|\leq \epsilon \|E\|$, $\|\Delta b\|\leq \epsilon \|e_b\|$, and assume that $\epsilon \|A^{-1}\|\|E\|<1$. Then

$$rac{\|x-y\|}{\|x\|} \leq rac{\epsilon \|A^{-1}\| \|A\|}{1-\epsilon \|A^{-1}\| \|E\|} \left(rac{\|e_b\|}{\|b\|} + rac{\|E\|}{\|A\|}
ight)$$

Normwise backward error

ightharpoonup We solve Ax=b and find an approximate solution y

Question: Find smallest perturbation to apply to A,b so that *exact* solution of perturbed system is y

➤ Formally:

For a given y and given perturbation directions E, e_b , we define the Normwise backward error:

$$\eta_{E,e_b}(y) = \min\{\epsilon \mid (A+\Delta A)y = b+\Delta b;$$
 where $\Delta A, \Delta b$ satisfy: $\|\Delta A\| \leq \epsilon \|E\|;$ and $\|\Delta b\| \leq \epsilon \|e_b\|\}$

 \blacktriangleright In other words $\eta_{E,e_b}(y)$ is the smallest ϵ for which

$$(1) \left\{ egin{array}{ll} (A+\Delta A)y = & b+\Delta b; \ \|\Delta A\| \leq \epsilon \|E\|; & \|\Delta b\| \leq \epsilon \|e_b\| \end{array}
ight.$$

- ightharpoonup y is given (a computed solution). E and e_b to be selected (most likely 'directions of perturbation for A and b').
- ightharpoonup Typical choice: $E=A, e_b=b$

Explain why this is not unreasonable

Let r = b - Ay. Then we have:

THEOREM 3:
$$\eta_{E,e_b}(y)=rac{\|r\|}{\|E\|\|y\|+\|e_b\|}$$

Normwise backward error is for case $E = A, e_b = b$:

$$\eta_{A,b}(y) = rac{\|r\|}{\|A\| \|y\| + \|b\|}$$

Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to Ax = b.

Consider the 6×6 Vandermonde system Ax = b where $a_{ij} = j^{2(i-1)}$, $b = A * [1, 1, \cdots, 1]^T$. We perturb A by E, with $|E| \leq 10^{-10} |A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.

Estimating condition numbers.

- ➤ Often we just want to get a lower bound for condition number [it is 'worse than ...']
- \blacktriangleright We want to estimate $||A|| ||A^{-1}||$.
- ightharpoonup The norm ||A|| is usually easy to compute but $||A^{-1}||$ is not.
- \triangleright We want: Avoid the expense of computing A^{-1} explicitly.

Idea: Select a vector v so that ||v|| = 1 but $||Av|| = \tau$ is small.

ightharpoonup Then: $||A^{-1}|| \ge 1/ au$ (show why) and:

$$\kappa(A) \geq rac{\|A\|}{ au}$$

ightharpoonup More generally: $\|A^{-1}\| \geq \frac{\|v\|}{\|Av\|}$ and so:

$$\kappa(A) \geq rac{\|A\|\|v\|}{\|Av\|}$$

- ightharpoonup Condition number worse than $\|A\|/ au$.
- Typical choice for v: choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back-substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.
- Similar techniques used to estimate condition numbers of large matrices in matlab.

Condition numbers and near-singularity

 $> 1/\kappa \approx$ relative distance to nearest singular matrix.

Let A,B be two n imes n matrices with A nonsingular and B singular. Then

$$\frac{1}{\kappa(A)} \leq \frac{\|A - B\|}{\|A\|}$$

Proof: B singular $\rightarrow \exists x \neq 0$ such that Bx = 0.

$$||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| \, ||Ax|| = ||A^{-1}|| \, ||(A-B)x||$$

 $\le ||A^{-1}|| \, ||A-B|| \, ||x||$

Divide both sides by $||x|| \times \kappa(A) = ||x|| ||A|| ||A^{-1}|| \triangleright$ result. QED.

Example:

6-16

let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0.99 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Then
$$\frac{1}{\kappa_1(A)} \leq \frac{0.01}{2} > \kappa_1(A) \geq \frac{2}{0.01} = 200$$
.

➤ It can be shown that (Kahan)

$$rac{1}{\kappa(A)} = \min_{B} \; \left\{ rac{\|A-B\|}{\|A\|} \; \mid \; \det(B) = 0
ight\}.$$

Estimating errors from residual norms

Let \tilde{x} an approximate solution to system Ax = b (e.g., computed from an iterative process). We can compute the residual norm:

$$\|r\|=\|b-A ilde{x}\|$$

Question: How to estimate the error $||x - \tilde{x}||$ from ||r||?

ightharpoonup A simple option is to use the inequality (Show this from Theorem 1 with E=0):

$$\frac{\|x-\tilde{x}\|}{\|x\|} \leq \kappa(A) \, \frac{\|r\|}{\|b\|}.$$

 \blacktriangleright We must have an estimate of $\kappa(A)$.

$$\frac{\|x-\tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}.$$