ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS

- · Conditioning of linear systems.
- Estimating errors for solutions of linear systems
- (Normwise) Backward error analysis
- Estimating condition numbers ..

Rigorous norm-based error bounds

LEMMA 1: If $\|E\| < 1$ then I - E is nonsingular and

$$||(I-E)^{-1}|| \le \frac{1}{1-||E||}$$

Proof is based on following 5 steps

- a) Show: If $\|E\| < 1$ then I E is nonsingular
- b) Show: $(I E)(I + E + E^2 + \cdots + E^k) = I E^{k+1}$.
- c) From which we get:

$$(I-E)^{-1} = \sum_{i=0}^k E^i + (I-E)^{-1} E^{k+1}
ightarrow$$

Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the solution x when the data, namely A and b, undergoes small variations. Problem is Ill-conditioned if small variations in data cause very large variation in the solution.

Setting:

 \blacktriangleright We perturb A into A+E and b into $b+e_b$. Can we bound the resulting change (perturbation) to the solution?

Preparation: We begin with a lemma for a simple case

GvL 3.5 – Pert

d)
$$(I-E)^{-1}=\lim_{k o\infty}\sum_{i=0}^k E^i$$
 . We write this as

$$(I-E)^{-1} = \sum_{i=0}^{\infty} E^i$$

e) Finally:

GvL 3.5 - Pert

$$egin{aligned} \|(I-E)^{-1}\| &= \left\|\lim_{k o\infty}\sum_{i=0}^k E^i
ight\| = \lim_{k o\infty}\left\|\sum_{i=0}^k E^i
ight\| \ &\leq \lim_{k o\infty}\sum_{i=0}^k \left\|E^i
ight\| \leq \lim_{k o\infty}\sum_{i=0}^k \|E\|^i \ &\leq rac{1}{1-\|E\|} \end{aligned}$$

6-4 ______ GvL 3.5 – Peri

➤ Can generalize result:

LEMMA 2: If A is nonsingular and $\|A^{-1}\| \ \|E\| < 1$ then A+E is non-singular and

$$\|(A+E)^{-1}\| \le \frac{\|A^{-1}\|}{1-\|A^{-1}\| \|E\|}$$

- \blacktriangleright Proof is based on relation $A+E=A(I+A^{-1}E)$ and use of previous lemma.
- Now we can prove the main theorem:

THEOREM 1: Assume that $(A+E)y=b+e_b$ and Ax=b and that $\|A^{-1}\|\|E\|<1$. Then A+E is nonsingular and

$$\frac{\|x-y\|}{\|x\|} \leq \frac{\|A^{-1}\| \|A\|}{1-\|A^{-1}\| \|E\|} \left(\frac{\|E\|}{\|A\|} + \frac{\|e_b\|}{\|b\|}\right)$$

GvL 3.5 – Pert

The quantity $\kappa(A) = ||A|| ||A^{-1}||$ is called the condition number of the linear system with respect to the norm ||.||. Thus, for p-norms we write:

$$\kappa_p(A) = \|A\|_p \|A^{-1}\|_p$$

- Note: $\kappa_2(A) = \sigma_{max}(A)/\sigma_{min}(A)$ = ratio of largest to smallest singular values
- ➤ Determinant *is not* a good indication of sensitivity. Small eigenvalues *do not* always give a good indication of poor conditioning.

Example: Consider, for a large α , the $n \times n$ matrix $A = I + \alpha e_1 e_n^T$

lacksquare Inverse of A is : $A^{-1}=I-\alpha e_1e_n^T$ lacksquare For the ∞ -norm we have

$$\|A\|_{\infty}=\|A^{-1}\|_{\infty}=1+|lpha|\longrightarrow \quad \kappa_{\infty}(A)=(1+|lpha|)^2.$$

 $ightharpoonup \kappa_{\infty}(A)$ is large for large α – but all the eigenvalues of A are equal to one.

Proof: From $(A+E)y=b+e_b$ and Ax=b we get $(A+E)(y-x)=e_b-Ex$. Hence:

$$y - x = (A + E)^{-1}(e_b - Ex)$$

Taking norms $\to \|y - x\| \le \|(A + E)^{-1}\| [\|e_b\| + \|E\|\|x\|]$

ightharpoonup Dividing by ||x|| and using result of lemma

$$egin{aligned} & rac{\|y-x\|}{\|x\|} \leq \|(A+E)^{-1}\| \left[\|e_b\|/\|x\|+\|E\|
ight] \ & \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|E\|} \left[\|e_b\|/\|x\|+\|E\|
ight] \ & \leq rac{\|A^{-1}\|\|A\|}{1-\|A^{-1}\|\|E\|} \left[rac{\|e_b\|}{\|A\|\|x\|}+rac{\|E\|}{\|A\|}
ight] \end{aligned}$$

Result follows by using inequality $\|A\| \|x\| \geq \|b\|$

QED

GvL 3.5 - Pert

Show that $\kappa(I) = 1$;

 $lue{\kappa}_3$ Show that $\kappa(A)=\kappa(A^{-1})$

Show that for $\alpha \neq 0$, we have $\kappa(\alpha A) = \kappa(A)$

[δ 5] (Alternative form of Theorem 1). Assume that $||E||/||A|| \le \delta$ and $||e_b||/||b|| \le \delta$ and $\delta \kappa(A) < 1$. Show:

$$rac{\|x-y\|}{\|x\|} \leq rac{2\delta\kappa(A)}{1-\delta\kappa(A)}$$

6-7 ______ GvL 3.5 – Pe

6-8

GvL 3.5 - Pert

Let us revisit Theorem 1:

Simplification when $e_b = 0$:

$$\frac{\|x-y\|}{\|x\|} \leq \frac{\|A^{-1}\| \, \|E\|}{1-\|A^{-1}\| \, \|E\|}$$

Simplification when E=0:

$$\displaystyle rac{\|x-y\|}{\|x\|} \leq \|A^{-1}\| \ \|A\| \displaystyle rac{\|e_b\|}{\|b\|}$$

Another common form:

THEOREM 2: Let $(A+\Delta A)y=b+\Delta b$ and Ax=b where $\|\Delta A\|\leq \epsilon\|E\|$, $\|\Delta b\|\leq \epsilon\|e_b\|$, and assume that $\epsilon\|A^{-1}\|\|E\|<1$. Then

$$\left\| rac{\left\| x - y
ight\|}{\left\| x
ight\|} \leq rac{\epsilon \left\| A^{-1}
ight\| \left\| A
ight\|}{1 - \epsilon \left\| A^{-1}
ight\| \left\| E
ight\|} \left(rac{\left\| e_b
ight\|}{\left\| b
ight\|} + rac{\left\| E
ight\|}{\left\| A
ight\|}
ight)$$

GvL 3.5 – Pert

 \blacktriangleright In other words $\eta_{E,e_b}(y)$ is the smallest ϵ for which

$$(1) egin{cases} (A+\Delta A)y = & b+\Delta b; \ \|\Delta A\| \leq \epsilon \|E\|; & \|\Delta b\| \leq \epsilon \|e_b\| \end{cases}$$

- ightharpoonup y is given (a computed solution). E and e_b to be selected (most likely 'directions of perturbation for A and b').
- ightharpoonup Typical choice: $E=A, e_b=b$

Let r = b - Ay. Then we have:

THEOREM 3:
$$\eta_{E,e_b}(y) = \frac{\|r\|}{\|E\|\|y\| + \|e_b\|}$$

Normwise backward error is for case $E = A, e_b = b$:

$$\eta_{A,b}(y) = rac{\|r\|}{\|A\| \|y\| + \|b\|}$$

Normwise backward error

ightharpoonup We solve Ax = b and find an approximate solution y

Question: Find smallest perturbation to apply to A,b so that *exact* solution of perturbed system is y

➤ Formally:

For a given y and given perturbation directions E, e_b , we define the Normwise backward error:

$$\eta_{E,e_b}(y) = \min\{\epsilon \mid (A+\Delta A)y = b+\Delta b; \ ext{where } \Delta A, \Delta b \ ext{ satisfy: } \|\Delta A\| \leq \epsilon \|E\|; \ ext{ and } \|\Delta b\| \leq \epsilon \|e_b\|\}$$

GvL 3.5 - Pert

Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to Ax = b.

Consider the 6×6 Vandermonde system Ax = b where $a_{ij} = j^{2(i-1)}$,

Consider the 6×6 Vandermonde system Ax=b where $a_{ij}=j^{2(i-1)},$ $b=A*[1,1,\cdots,1]^T.$ We perturb A by E, with $|E|\leq 10^{-10}|A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.

6-12 _____ GvL 3.5 – Pert

Estimating condition numbers.

- ➤ Often we just want to get a lower bound for condition number [it is 'worse than ...']
- \blacktriangleright We want to estimate $||A|| ||A^{-1}||$.
- ➤ The norm ||A|| is usually easy to compute but $||A^{-1}||$ is not.
- \blacktriangleright We want: Avoid the expense of computing A^{-1} explicitly.

Idea: Select a vector v so that ||v|| = 1 but $||Av|| = \tau$ is small.

ightharpoonup Then: $||A^{-1}|| \ge 1/ au$ (show why) and:

$$\kappa(A) \geq rac{\|A\|}{ au}$$

ightharpoonup More generally: $\|A^{-1}\| \geq \frac{\|v\|}{\|Av\|}$ and so:

$$\kappa(A) \geq rac{\|A\|\|v\|}{\|Av\|}$$

6-13 _____ GvL 3.5 – Pert

Example:

let $A = \begin{pmatrix} 1 & 1 \\ 1 & 0.99 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Then $rac{1}{\kappa_1(A)} \leq rac{0.01}{2} \blacktriangleright \kappa_1(A) \geq rac{2}{0.01} = 200$.

➤ It can be shown that (Kahan)

$$rac{1}{\kappa(A)} = \min_{B} \; \left\{ rac{\|A-B\|}{\|A\|} \; \mid \; \det(B) = 0
ight\}$$

Condition numbers and near-singularity

 $ightharpoonup 1/\kappa pprox$ relative distance to nearest singular matrix.

Let A,B be two $n \times n$ matrices with A nonsingular and B singular. Then

$$\frac{1}{\kappa(A)} \le \frac{\|A - B\|}{\|A\|}$$

Proof: B singular $\rightarrow \exists x \neq 0$ such that Bx = 0.

$$||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| \, ||Ax|| = ||A^{-1}|| \, ||(A-B)x||$$

 $\le ||A^{-1}|| \, ||A-B|| \, ||x||$

Divide both sides by $\|x\| imes \kappa(A) = \|x\| \|A\| \ \|A^{-1}\| imes$ result. QED.

GvL 3.5 – Per

ightharpoonup Condition number worse than $||A||/\tau$.

Typical choice for v: choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back-substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.

> Similar techniques used to estimate condition numbers of large matrices in matlab.

GvL 3.5 – Pert

6-16

Estimating errors from residual norms

Let \tilde{x} an approximate solution to system Ax=b (e.g., computed from an iterative process). We can compute the residual norm:

$$\|r\| = \|b - A ilde{x}\|$$

Question: How to estimate the error $\|x - \tilde{x}\|$ from $\|r\|$?

ightharpoonup A simple option is to use the inequality (Show this from Theorem 1 with E=0):

$$rac{\|x- ilde{x}\|}{\|x\|} \leq \kappa(A) \, rac{\|r\|}{\|b\|}.$$

 \blacktriangleright We must have an estimate of $\kappa(A)$.

✓ Show that

$$\frac{\|x - \tilde{x}\|}{\|x\|} \ge \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}$$

GvL 3.5 – Pert