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INTRODUCTION TO PARALLEL COMPUTING

Class time : MW 8:15 – 9:30 am
Room : Online via Zoom
Instructor : Yousef Saad

January 19, 2021



Objectives of this course

1 Parallel computers, why they are needed, their architectures,
various modes of parallel processing

2 Parallal programming including openMP, MPI, CUDA, ..

3 How to think parallel and design parallel programs. How to
optimize parallel algorithms. Illustrations with a few applications

4 Novel horizons. In particular a brief introduction to quantum
computing.
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Who is in this class:

• Yousef Saad - (me) Instructor

• Jim Mooney (Teaching Assistant)

• You - that is approximately 74 registered students:

ä CS graduate students (≈ 26)
ä CS Undergraduate students (≈ 20)
ä Data Science Grad. (9)
ä CE Undergrad. (4)
ä + math, Physics, economics, ...
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ä Please fill out (now if you can)

This survey

Short link url:

https://forms.gle/k4yDw3RoPvMUyDAh8
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Before we begin....

ä Lecture notes will be posted in the cselabs class websites:

URL : www-users.cselabs.umn.edu/classes/Spring-2021/csci5451

ä Lecture notes + some minimal information will be posted here.
Everything else: Canvas.

ä Links between the two (to and from Canvas) available

ä Review lecture notes and try to get some understanding – if
possible before class.

ä Lecture note sets are grouped by topics - not by lecture.

ä In the notes the symbol -1 indicates quick questions or sug-
gested exercises
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ä Lecture notes will occasionally contain URL’s. These are ’click-
able’ hyperlinks – For example this one:

http://www.cs.umn.edu/∼saad/teaching
or This one

ä This is an evolving document.. occasional reposts will be made

ä I will often post on Canvas, code samples for demos seen in class

ä Do not hesitate to contact me for any questions!
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A few resources

ä Quite a few resources out there.

For material covered in lectures:

• Book by Grama, Gupta, Karypis, & Kumar (2003, see syllabus for
details)

• Thinking in Parallel: Some Basic Data-Parallel Algorithms and
Techniques (104 pages) by Uzi Vishkin – October 12, 2010. see

http://www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/classnotes.pdf

• Lecture notes / Tutorials: Course from U. Cal. Berkeley see
https://sites.google.com/lbl.gov/cs267-spr2019/

ä More links will be included in lecture notes
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For parallel programming

ä I would recommend referring to the books mentioned in syllabus.
But there are many help sites available.

MPI

• Tutorials: https://mpitutorial.com/tutorials/

• LLNL site: https://computing.llnl.gov/tutorials/mpi/

CUDA

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

openMP

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

More will be added as needed
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Schedule
 PDF version of schedule

Jan Feb

01/20 02/01 02/10 02/10 02/17

1st Day HW1 Posted HW1 due Lab1 posted Quiz 1

March

03/03 03/03 03/10 03/17 03/17 03/24

Lab1 Due HW2 posted Quiz2 HW2 Due Lab2 posted Quiz3

April-May

04/02 (F) 04/11 (M) 04/14 04/28 05/03

Lab2 Due Lab3 Posted Quiz 4 Lab3 due Quiz 5

Notes:

Spring Break: Apr. 5--Apr. 9.
There is a quiz on last day of class [May 3rd -- which is a Monday - All other quizzes are on a Wednesday]. Note also that lab2 is due on
a Friday.
No final exam
Please read: additional information on syllabus and Policy and general info on homeworks and exams



GENERAL INTRODUCTION

• A short history

• Why parallel computing?

• Motivation: Scientific applications

• Levels of parallelism

• Introduction to parallelism: algorithms, complexity for a simple ex-

ample.

• Obstacles to efficiency of parallel programs

• Types of parallel computer organizations
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Historical perspective: The 3 stages of computing

1. Mechanization of arithmetic (abacus, Blaise Pascal’s adder [1623-
1662], various calculators, Leibnitz [1646-1716]).

2. Stored Programs: Automatic looms [1801]; punched cards ; ..

3. Merging of Mechanized Arithmetic & Stored Programs • Babbage
(1792–1871)

• Hollerith (census)→ IBM (1924)

• Mark 1 computer [1944]– 1st electromechanical computer.

• ENIAC : electronic computer (1946) - Upenn., and then UNIVAC
(1951) first real computer [used for census]
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The four (or five?) generations:

First: vacuum tubes;

Second: Transistors (1959-1965)

Third: Integrated circuits (1965–1970’s)

Fourth: Very Large Scale Integration. (VLSI); (1975 – ) micropro-
cessors

** In the 80s there was a plan [in Japan] for a fifth generation based
on AI ideas [LISP] and massive parallelism. This generation is with
us but not as envisioned.
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The Von Neumann architecture

CU ALU

* CPU *

MEMORY

Peripherals

6 6

-

-

Internal bus

• Central Processing Unit

– Control Unit
– Arithmetic Logic Unit (ALU)

• Memory Unit (or units) Main
memory, cache, ROM, ...

• Peripherals: External memories,
I/O devices, terminals, printers,
...

ä All components linked via one internal bus
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Execution of Von Neuman programs

• Fetch next instruction from memory into instruction registers

• Fetch operands from memory into data registers

• Execute instruction

• Load result into memory

• Repeat: fetch next instruction ...

ä Parallelism was slowly introduced into this sequential scheme
from very early on

ä Became a major force starting in the late 1980s
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Why parallelism? 50 years of clock speeds
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ä Main argument: Harder and harder to increase clock speeds.

ä Sustainable gains in speed, are only possible through better
software, better utilization of hardware, and parallelism

ä Parallelism is cost effective: multiplying hardware is cheap; fast
components are expensive.

ä Parallelism also helps from memory stand-point (multiplying
memory is cheap, building a system with a single large memory is
expensive).

-2 We want a Processor that delivers 1012 floating points oper-
ations per second. To get one flop per cycle, assuming transfer at
speed of light (3× 108m/sec), you need a data operand to travel
no more than ≤ l =?

-3 Let l be your answer from above. We want to pack 1012 bytes
on an l× l chip. What (approximate) area will be occupied by 1 bit?
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Why supercomputers? Weather simulation

ä What can supercomputers do that ordinary machines can’t?

See details in original article: 40 years of the world climate research
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Why supercomputers? Molecular dynamics

See original article: Supercomputer-Powered protein simulation
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Why supercomputers? Deep Learning

See original article: Supercomputing=heart of Deep learning
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Growth of ML computing:

See: https://openai.com/blog/ai-and-compute/
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Why supercomputers? PFLOPS=??

Q: What’s on the vertical axis?

A: flop/s == floating point operations per second

Kiloflops KFLOP/s = 103 flop/sec
Megaflops MFLOP/s = 106 flop/sec
Gigaflops GFLOP/s = 109 flop/sec
Teraflops TFLOP/s = 1012 flop/sec
Petaflops PFLOP/s = 1015 flop/sec
Exaflops EFLOP/s = 1018 flop/sec
Zettaflops ZFLOP/s = 1021 flop/sec

ä So 1 PFLOPs* 1 day = 1015 ∗ 3600 ∗ 24 ≈ 86× 1018 = 86
EFLOPS

ä Similar terminology for memory, e.g., 1 Terabyte = 1012 bytes.
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The Top 500 list

ä List of 500 fastest supercomputers in the world

ä Started in 1993. Updated twice a year [once in Europe and once
in the US.]

ä Based on ‘linpack’ benchmark [solving a large dense linear system]

ä It is getting gradually clear that a ‘linpack’ benchmark is
inadequate. The computational world is mixed: sparse, dense, low
precision, ...

ä Next chart shows performance of top computer (# 1 in list),
bottom computer ( # 500 in list) and the sum over all 500 – from
1993 to date.
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From the top500 site:
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Development is slowing down: ...
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Q: How are machines ranked?

A: A benchmark based on ‘linpack’ (now LAPACK) – essentially
solving a dense linear system.

This is different from the peak performance = highest possible flop
count that can theoretically be achieved.

-4 Suggested hw: visit the web site of the top 500 fastest com-
puters:

https://www.top500.org/lists/2020/11/

Let us take a quick look..
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Top: Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C. (Japan) Riken center for computational sciences. 7.6 M cores,
5 PetaB memory (5M GB) Linpack Benchmark: 442 Petaflops.
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Second machine:

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband

General
Manufacturer: IBM
Cores: 2,414,592
Memory: 2,801,664 GB
Processor: POWER9 22C

3.07GHz
Interconnect: Dual-rail Mellanox

EDR Infiniband

Performance
Linpack Performance (Rmax) 148,600 TFlop/s
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New things that are emphasized

ä Performance for data analytics: approximately 3 EFlop/s with
Mixed precision (e.g. for deep learning)

ä Energy comsumption Power: 10 Megawatts. Enough to power
∼ 5,000 homes.

ä There is also a ranking by “greenness” the ‘Green500’ List [the
number one machine is made by Fujitsu] for details see

https://www.top500.org/lists/green500/2020/11/

1-28 1 – Intro

1-28

https://www.top500.org/lists/green500/2020/11/


Summit’s processors:

Each node:

• 2 POWER9 proc.s

• 6 Nvidia Tesla V100 GPUs

• 608 GB fast memory

• 1.6 TB of NVMe memory

ä Approximately 40 TFlop/s per node

ä each node: 96 GB of HighBandwith Memory (HBM2) for use by
acc’s

ä Each Power9 has 22 cores

ä Each V100 GPU: 80 Streaming Multiprocessor [SMs]
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Discussion

-5 What are the main compoments that characterize a supercom-
puter?

-6 For Summit, can you tell how the total number of cores (2,414,592)
was obtained? [hint: there are 4,608 nodes, each with 2 Power9s (22
cores each) and 6 Nvidia V100]

-7 Similarly how is the Peak rate (Rpeak) of 200 PFlop/s obtained?
[Hint: Look at the V100 and power9 peak rates]
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* Note: they counted a streaming multiprocessor as one ’core’

* Below is a V100 with 84 SMs- Locate one SM on the figure
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* Here is one SM:

-8 Count the to-
tal number of FP32
CPUs in a V100
board with 84 SM’s

-9 Same question
for FP64 CPUs
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Parallel computing – Motivation – Moore’s Law

ä Demand for computational speed is always increasing. Trend is
accelerating due to new developments: demand in biology, genomics,
as well as in physics/chemistry.

ä It was realized around the mid 1970s that gains in raw speed
(clock cycle) were becoming harder to achieve.

ä From 1950 to the mid 70s: speed gained a factor of 100,000

ä 3 orders of magnitude due to clock cycle. The other 2 to
architecture and design.

ä A factor of about 10 every 5 years.

ä From 1970 to 2005: gain of 5000 – [a factor of 2 every 3 years]

ä Then from 2005 on – gain in clock cycle basically stalled.
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ä In 1975 Cray (a Minnesota
company!) unveiled its first com-
mercial supercomputer. Clock cy-
cle: 12.5 ns. (i.e., freq. of
80MHz.)
ä A ‘vector’ supercomputer
ä Peak speed: 160 Megaflops
-10 How do we get the peak
speed of 160 Megaflops?
ä Your laptop is faster [and does
not cost $ millions]

ä Clock-cycles are one of the consequences of large scale integration
[milli, micro, nano, ..]

ä Today some chips have over a few billion transistors (!)

ä In the early 1970s: thousands only.
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Number of transistors that can be placed on a chip doubles every
2 years (Moore’s Law).

Moore’s Law:
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ä Moore’s law has been incredibly accurate considering that it was
stipulated in 1965! [actual ratio corrected in 1975.. still....]

-11 Determine what processor is in your laptop find out the number
of cores, and clock speed.

-12 Continuation: see if you can determine its number of transistors
[Hint: search the web!]
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48 years of Processor Trends

Remarkable chart [from M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, C. Batten, and K. Rupp]
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A few computationally intensive applications

Weather forecasting - Partial differential equations – Time depen-
dent problems involving several unknowns per mesh point – leads to
very large nonlinear models.

-13 Assume a region of 10, 000km × 5, 000km and a height
of 10km. If cells of 1 cubic km are used: what is the total number
of cells?

ä Challenge: complete the calculation for tomorrow’s weather
before tomorrow.

Device/ circuit simulation. Computer chips have in the order of
billions of gates. Numerical simulation of flow of electrons and holes
is exceedingly complex. Simplifications are common to reduce size.
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Reservoir simulation (petroleum engineering) - Typical reservoir
size: a few tens of kms, a few tens of meters deep. Problem: find
concentration of oil in the ground over time. Oil companies were the
first commercial buyers of supercomputers.

-14 Calculate the system size for the case of a 10km×10km×
400m reservoir, when a mesh-size of 2m is used (one node every
2m in each direction).

Electronic structures calculations / quantum mechanics
Chemists and physicists doing electronic calculations are the biggest
users of supercomputers.
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• The Gordon Bell awards. https://awards.acm.org/bell

2020

2019
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2018

2017

ä New: the 2018 and 2029 awards are data-centric or use DNN.
More and more ML or ML+ awards made.
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-15 What was the very first *commercial* computer ever built?
what was its speed [in Floating Point Operations per seconds?]

-16 When and where was the very first *commercial* ‘vector’
supercomputer built? [hint: it was in a cold snowy place] – what
was its approximate speed?
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New Horizon: HPC for machine learning

ä Computing with Data or Infering with data has become very
important.

ä High-performance has played a big role in machine learning and
is in part responsible for the rebirth of Deep Learning.

ä The ImageNet competition (Large Scale Visual Recognition Chal-
lenge) – was a competition that evaluates algorithms for object detec-
tion and image classification held from 2010 to 2017 http://www.image-net.org/challenges/LSVRC/

ä In 2012 a convolutional neural network (CNN) called AlexNet won
the competition – achieved top-5 error of 15.3% in the ImageNet 2012
Challenge. GPUs (Graphical Processing Units) were a key ingredient
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New Horizon: Quantum computing (?)

• Note: The question mark is deliberate

ä Idea: Harness the unusual properties of the quantum physics
world to perform large calculations

ä Potential is enormous ...

ä ... But so are challenges.

ä Governments believe in QC as the next big thing ... [funding]

ä QC - will be discussed a little at end of course
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Basics of parallel computing

Simple example of calculating the sum of n numbers

s =

n−1∑
i=0

xi

Sum is traditionally computed as :

ALGORITHM : 1 Sum of n numbers

s = 0;
for (i = 0; i < n; i + +)

s+ = x[i] ;

ä n− 1 “sequential” operations

ä How can we introduce/exploit parallelism?
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ä Split the sum in p subsums. Assume n = p ∗m.

ALGORITHM : 2 Parallel Sum of n numbers

for (j = 0; j < p; j + +) { // Parallel Loop
tmp[j] = 0;
for (i = j ∗m; i < (j + 1) ∗m; i + +)

tmp[j]+ = x[i];
}
s = 0;
for (j = 0; j < p; j + +) // Sequential loop

s+ = tmp[j];
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++ +

+

ä Number of operations:
p ∗ (m− 1) + p− 1 = n− 1 (unchanged)

ä Each subsum is done independently
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ä Assume n = 2k and n/2 arithmetic units (“processors”) are
available. Then, can apply the idea recursively.

ä Divide into 2 subsums – each subsum is divided in two subsums
etc.. Yields the cascade sum:

ALGORITHM : 3 Cascade Sum of n numbers

// Sequential loop:
for (stride = 1; stride < n; stride ∗ = 2) {

// Parallel Loop:
for (j = 0; j + stride < n; j + = 2 ∗ stride)

x[j]+ = x[j + stride];
}

ä Final result in x[0]. Number of s needed: log2n. Can be
generalized to case where n not a power of 2.
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Stride = 4

Stride = 1

Stride = 2x2 x6

x4

x4x0

x0

x0

x0    x1    x2     x3  x4     x5    x6    x7

ä A sum of n numbers can be computed in Order log(n) time
units where a time unit is the time to perform an add.

ä Similarly for the product of n numbers.

ä Is it always worth doing this ?
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Example: Assume 64 students in this class. Can compute the
sum of 128 numbers by cascade algorithm.

-17 (1) How to organize the calculations?

-18 (2)What are the other times involved (i.e., other than the times
needed for adding)?

-19 (3) Will it be cost-effective (time-wise)?

-20 (4) Assume now that we need to add 128 matrices of size
10× 10 each - by hand. Can the cascade algorithm be used? What
has changed?
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Levels of parallelism

Five different types of parallelism are commonly exploited:

1. At job level, i.e.; between different running jobs.

2. At ‘Macrotask’ level: execution of different parallel sections of a
given program; (often termed “coarse-grain” parallelism)

3. ‘Microtask’ level; for example parallelism related to different steps
of a loop;

4. Data-parallelism; Same operation performed on similar data sets
(e.g. adding two matrices, two vectors). Hardware support pro-
vided for such operations.

5. At the arithmetic level (pipelining, multiple functional units, etc..)
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ä There is a common distinction between

• Fine grain parallelism: arithmetic operations or loop level, i.e.,
levels 3, 4 and 5 in previous list.

• Coarse grain parallelism : bigger tasks (‘macrotasks’) are exe-
cuted independently.

ä In coarse-grain parallelism the user often defines the macro-tasks
and programs the parallelism explicitly.

ä In contrast fine-grain parallelism is often (not always) self-scheduled
(’automatically’ determined) or inherent to the language
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Example: Fine grain parallelism: the SAXPY loop [BLAS1]

c FORTRAN-90 CONSTRUCT:
x(1:n) = x(1:n) + alp*d(n1:n1+n-1)

Example: Coarse grain parallelism: parallel execution of calls to
a given subroutine:

#parallel for
for (dom=0; dom<n_regions; dom++) {

// solve in each domain
pde_solv(neq,domain, x, y, z, ...)

}

ä Each step solves a Partial Differential Equation on a different
subregion.
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Barriers to Parallel Efficiency

ä The example of adding n numbers can give an indication to a
few of the potential barriers to efficiency:

1. Data movement. Data to be exchanged between processors.
Data may have to move though several stages, or other processors,
to reach its destination.

2. Poor load balancing. Ideally: all processors should perform an
equal share of the work all the time. However, processors are often
idle waiting data from others.

3. Shynchronization. Some algorithms may require synchroniza-
tion. This global operation (requires participation of all processors)
may be costly.

1-54 1 – Intro

1-54



4. Impact of Architecture. Often, in parallel processing, processors
will be competing for resources, such as access to memory, or cache..

5. Inefficient parallel algorithm. Some sequential algorithms do not
easily parallelize. New algorithms will be required - which may be
inefficient in sequential context.
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Three common parallel programming paradigms

1. Shared global memory viewpoint – programs will execute in par-
allel (parallelization with or without help from user) and access a
shared address space. [example: Open MP.] → Symmetric Multi-
Processing (SMP) (!)

2. Message passing viewpoint – programs to run in parallel with
data exchange explicitly programmed by user. [example: MPI]

3. SIMD/ SIMT viewpoint programs will execute regular compu-
tations (vectors, matrices) extremely fast on specialized hardware.
[Vector computers, GPUs, ..]

ä Drawbacks with (1) : Need to make sure data being used is the
latest one - need to synchronize.

ä Drawbacks with (2) : difficult to program.

ä Drawbacks with (3) : what about irregular computations?
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Message passing

Message exchange

Shared memory

Shared Global Memory

PE1  .PE2 PEp..

interconnect

ä In the 70’s and 80’s (1) was very popular [“parallelizing com-
pilers”] Then message passing gained ground with libraries such as
PVM and MPI..

ä Programming models for (1) and (2) are very different
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