
PRINCIPLES OF PARALLEL ALGORITHM DESIGN

• Dependency graphs. Parallelism in algorithms

• Characteristics on tasks and interactions.

• Decomposition methods

• Mapping and load balancing

10-1

Tasks and Communications

ä Designing parallel programs is all about tasks [which will run in
parallel]

ä Tasks can have fine or coarse granularity

ä Tasks can communicate with each other ...

... either explicitly as in mes-
sage passing, or through mem-
ory access + some sychronization
mechanism - as in shared memory
models

10-2 – models

10-2

The two prevailing programming viewpoints

Shared memory model
Program

Shared

Tasks

mem.
loc

Memory

ä Single program forks tasks
–
ä Open MP, threads

Message passing model

mem.
loc

Task Task Task

Program ProgramProgram

ä Usually Single Program
Multiple Data
ä MPI, PVM, ..

ä Important: in both cases, a standard language (e.g., FORTRAN,
C, C++) is augmented by a either communication library (MPI) or
directives (openMP).

10-3 – models

10-3

Designing parallel programs

There are four main steps:

1. Decomposition into tasks

2. Identify Communication patterns (local, global, broadcast, ...)

3. Agglomeration and load balancing (grouping tasks together to
improve performance, simplify coding, achieve balanced work among
PEs, ...

4. Mapping: process of assigning tasks to processors.

[See Ian Foster “Designing and building parallel programs”]

10-4 – models

10-4

Tasks and dependency graphs

ä First issue: identify “tasks” considered as indivisible units of
work. “Fine-grain” parallelism: tasks are grouped in very small
units, e.g., at the level of artithmetic operations. “Coarse grain”
parallelism: tasks are bigger.

ä Tasks depend on each other : the result of one task may be
required by another task.

ä Important tool: Dependency Graph, which sets the dependencies.
There is an (oriented) edge from task A to task B if B cannot be
started before A is completed.

10-5 – models

10-5

A simple example

ä Consider the following tasks

S1: A = B + C First task
S2: B = B ∗A S1 must be done first
S3: A = A + 1.0 S1 must be done first
S4: C = A ∗ 2 + 3 S3 must be done first
S5: X = A + B S3, S2 must be done first

ä Dependence graph :
Possible schedule:
(1) S1;
(2) S2, S3;
(3) S4, S5. S

S S S

S

1 2

3 4

5

10-6 – models

10-6

Example: triangular system solutions

Example: Solve the linear system of equations

Ax = b

where A has the following structure:

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+

ä 12 tasks altogether [one for solving each equation]
10-7 – models

10-7

ä Task number i: solve equation number i.

ä Dependency: unknown i requires previous unknowns to which it
is coupled by an equation. Thus, x6 requires unknowns x5 and x2.

ä Dependency graph :

• • • •- - -

6 6 6 6

1 2 3 4

• • • •- - -

6 6 6 6

5 6 7 8

• • • •- - -

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

9 10 11 12

Sets of equations that can be solved in parallel:

{1}, {2, 5}, {3, 6, 9}, {4, 7, 10}; {8, 11}; {12}

10-8 – models

10-8

Some definitions

ä Degree of concurrency = max number of tasks which can be
performed in parallel

ä Critical path = longest (directed) path between any two nodes in
the graph == Longest path from a start node (no incoming edges)
to a finish node (no outgoing edges). Path not unique.

ä Nodes can be weighted to include a cost measure in case the
tasks have different costs

ä Weighted path length = the sum of the weights of the nodes
along the path. “Critical path length” = maximum path length. If
weights represent time, the algorithm cannot be executed in less time
than the critical path length.

10-9 – models

10-9

ä Mapping: the mechanism by which tasks are assigned to pro-
cessors. May also refer to method by which Data is assigned to
processors.

Example: For the example of the sparse triangular solve, one
can define the weights on the nodes as the number of operations
performed to compute xi. Observe that at each node this cost is

wi = 1 + 2 ∗ (# incoming edges)

-1 What is the critical path length in this case?

10-10 – models

10-10

Decomposition

ä Decomposition refers to the process of splitting the initial com-
putation into independent tasks.

Recursive decomposition: Divide and conquer paradigm

Example: Recursive Quick-
sort [sorting will be covered in
detail later]

3 8 6 2 4 7

3 2 5

3 6 79

4 97

9

7986

2 5

3 8

5

4

4

2

8

Example: Search a data item in an array.

10-11 – models

10-11

Data decomposition: Concurrency is unraveled by primarily split-
ting data. Best examples: Adding n numbers, Adding 2 matrices,
product of matrices, ..

Example: Go back to the sum of n numbers

S = x1 + x2 · · ·+ xn = S1 + S2 where

S1 = x1 + x2 · · ·+ xm

S1 = xm+1 + xm+2 · · ·+ xn

10-12 – models

10-12

Example: Matrix-vector product

ä To compute: y = Ax where A is
m× n, x ∈ Rn.
ä Consider row-based algorithm:
yi = A(i, :).x

ä yi = Dot product of row i with x
ä Can execute these tasks in parallel

= *

A * x =y

ä Can also divide the rows into blocks.
ä We say that we have defined a tasks
with ‘coarser’ granularity.
ä The result now is a block of y instead
of just one component

P1

P0

P5

10-13 – models

10-13

In summary: Major types of decomposition

Data Decomposition Problem divided based on splitting data

Recursive Decompositon Divide and conquer - e.g. Quicksort

Exploratory decomposition: Is usually related to problems which
involve a search space (best example: game of chess). Different
search spaces are explored in parallel by different processors

Speculative decomposition: In case of branches in the algorithm,
different “speculative” branches can be taken by different processors

10-14 – models

10-14

Mapping and load balancing

One of the biggest sources of loss of efficiency is a poor “load
balancing”, where some processors are idle while others are busy.

Two two ways to achieve load-balancing:

1. Static mapping: estimate various task and communication costs
and schedule tasks statically. Tasks / data are distributed in a certain
way at the start (no changes during execution).

2. Dynamic mapping: Tasks / data are distributed/ redistributed
during execution.

10-15 – models

10-15

ä Static mapping schemes: typically achieved by mapping the data.

ä Many such examples related to matrix computations. Another
example: Domain decomposition by graph partitioning.

ä Dynamic scheduling schemes: best example is the ...

Master-Worker model. A master processor determines where each
task is to be performed. May send off tasks to other processors or
may give pointers as to what to do (see next example). May collect
results back - or may probe processors to make decisions for next
steps. Main point: all decisions, in particular which task performed
where, are determined by the Master

10-16 – models

10-16

The Master-Worker model

Send Tasks

Receive results

P0

P1

P2

P3

P4

Master

Workers

Example: A real-life example from Materials Science. Problem
is to compute a dense symmetric matrix. Each row is *very* expen-
sive to compute.

ä Only lower portion of K matrix saved [incomplete rows]

10-17 – models

10-17

Rows to be

computed by

processor i

For each row,

solve Poisson’s

equation, then

compute all row

entries

10-18 – models

10-18

ä Master-worker model: A master sends indices i1, i2 of a block
to be computed. Many factors are considered to determine the block
i1 − i2.

i1, i2

Save rows

disk

rows i1−i2
of K

Compute
Master Proc.
Compute

of K to

K(j1:j2,:) K(i1:i2,:)

Workers

10-19 – models

10-19

Task pool model

ä Processors take tasks from a global pool (again “global view”
but tasks may be distributed). The pool itself can be dynamic.

ä Can be entirely decen-
tralized - (distributed deci-
sions) or centralized (book-
keeping of tasks is done in
one location).
ä Tasks are essentially
moved around – so one re-
quirement: little data to be
moved along.

Spawn new tasks
Dispatch some to non-busy
processors and perform a subset
when finished - compare my busy-time
with others. Broadcast availability/
.....

10-20 – models

10-20

