
PERFORMANCE ANALYSIS

• Introduction to performance analysis

• Amdahl’s law

• Speed-up, Efficiency

• Scalability

11-1



Speed-up and efficiency

ä Parallel run time of a program = time elpased between beginning
of parallel program and completion of last (parallel) process.

Speed-up: S(p) =
Run-time on one processor
Run-time on p processors

ä NOTE: In practice, speed-up refers to observed speed-up. It can
be estimated theoretically.

11-2 – Perf

11-2



Example: Sum of n numbers with cascade sum. Sequential
time is (n − 1) × τ . If communication time is neglected (PRAM
model), then time on n/2 processors is log2(n). So speed-up using
n/2 processors is

S

(
n

2

)
=

n− 1

log2(n)
≈

n

log2(n)

ä Speed-up is normally ≤ p. However, “superlinear” speed-up can
be observed in some cases.

ä Examples: (1) effect of cache; (2) Better vectorization of parallel
algorithm, (3) Parallel algorithm performs different operations.

11-3 – Perf

11-3



Efficiency:

E(p) = S(p)
p

ä In general E(p) ≤ 1, but there are cases when E(p) >1 (see
above). Efficiencies close to one are hard to achieve.

Cost: Sum of times spend by all processors in the execution of the

algorithm.

ä An algorithm is cost-optimal if cost is of the same order as cost
on one processor.

-1 In the example of the cascade sum above is the algorithm cost-
optimal?

11-4 – Perf

11-4



Classical performance model: Amdahl’s Law

ä Main point: speedup of a parallel program is limited by the time
needed for the serial fraction of the problem

ä Let T (p) = run-time for a parallel program on p processors

ä If a problem has W operations of which a component of Ws

operations are serial, the best achievable time on p Processors is:

T (p) = W−Ws

p
+Ws

ä So best achievable speed-up is

S(p) = W
(W−Ws)/p+Ws

11-5 – Perf

11-5



ä Let f = Ws

W
. Then

S(p) = 1
(1−f)/p+f and E(p) = 1

1+f(p−1)

ä Known as Amdahl’s law (1967)

ä As p goes to infinity we have S(p) < W
Ws

– which is 1/f in the
previous notation.

-2 Find S(p) when Ws/W = 0.2 and the limits of S(p) and
efficiency E(p) in this case

11-6 – Perf

11-6



Amdahl’s Law in action

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

E
ffi

ci
en

cy

Processors

Amdahl s Law

f=0.01

f=0.05

f=0.1
f=0.2

11-7 – Perf

11-7



-3 Determine the number of processors p1/2 for which efficiency
is 50 percent. Determine the number of processors pe for which
efficiency is equal to e (with 0 < e < 1).

Example: Sum of n numbers on p processors. There is a
sequential part (summation of subsums) and the parallel part (com-
puting the subsums in parallel).

ä Example of the sum of n numbers see earlier where the summa-
tion of subsums is done with the cascade algorithm.

Consequences of Amdahl’s law:

ä A small part of sequential code can have a big effect on perfor-
mance

ä Effort in parallelizing a small fraction of sequential code may yield
a big pay-off

11-8 – Perf

11-8



Scalability

ä In rough terms: An algorithm is scalable if increasing the number
of processors does not degrade efficiency. An algorithm is not scalable
if efficieny goes to zero as p→∞.

ä The total overhead of a parallel program is defined as

To(p) = pT (p)− T (1)

Here T (1) is the sequential time (sometimes denoted by TS).

Therefore: E(p) =
T (1)

pT (p)
=

1

1 + To(p)/T (1)

ä Typically, To(p) increases with p. Note that To includes times
for sequential parts. It grows at least linearly with p.

-4 What is To(p) for the sum example with p = n/2?
11-9 – Perf

11-9



Gustafson’s law

ä In this model, the ratio To(p)/T (1) is reduced by by increasing
the problem size, i.e., T (1). Rationale: practically p often increased
in order to solve a bigger problem.

ä Within Amdahl’s model, this means we need to increase size to
keep f constant.

ä Equivalently: assume that the time on a p-processor system is
fixed and let f be the fraction of sequential code on the p-processors,

fT (p) = run time for sequential part
(1− f)T (p) = run time for parallel part

11-10 – Perf

11-10



ä Time it would take the same program on one PE:

T (1) = fT (p) + p(1− f)T (p) →

S(p) = f + (1− f)p

which is linear in p. Note that E(p) = 1− f + f/p

ä Known as Gustafson’s law or Gustafson-Barsis law

11-11 – Perf

11-11



The Karp-Flatt metric

ä Amdahl’s law and the Gustafson-Barsis law both ignore issues
related to overhead. The Karp-Flatt metric introduces a way to
determine when overhead is an issue.

Write parallel
time as:

T (p) = s+ 1
p
Wa + c(p)

Where s = time for purely sequential part of program, Wa = the
parallelizable part and c(p) = overhead

ä c(p) includes communication, redundant computations, etc.

ä With respect to Amdahl’s Law notation:

W ≡ T (1); Ws ≡ s+ c(p); W −Ws ≡Wa

ä Note that on one processor: c(1) = 0. So T (1) = s+Wa.

11-12 – Perf

11-12



ä Let e(p) = (s + c(p))/T (1). Called the ‘experimentally
determined serial fraction’

ä e(p) = same as f in Amdahl’s law. So Amdahl’s law gives:

S(p) = 1
(1−e(p))/p+e(p)

ä So far nothing new. However, the viewpoint is different. Express
e(p) as a function of S(p). We get:

e(p) =
1/S(p)− 1/p

1− 1/p

ä Called the Karp-Flatt metric: One observes the *actual* speed-up
and dermines from it the estimated fraction e(p).

ä If e(p) stays about the same as p ↑ : low efficiency due to lack
of parallelism - not overhead.

ä Otherwise : too much overhead / or inefficient parallel code
11-13 – Perf

11-13



-5 Rewrite the Karp-Flatt metric in terms of the efficiency.

-6 Suppose that you observe the speed-up of your parallel program
and find that S(p) ≈ α

√
p. Find e(p). What can you conclude

on the efficiency of your program?

-7 Under what condition on S(p) is e(p) (exactly) constant?
What is the limit limp→∞ S(p) in this case?

-8 Suppose that you observe the speed-up of your parallel program
and find that S(p) ≈ p/(1 + α

√
p). Find e(p) in this case.

What can you conclude on the efficiency of your program assuming
that α is small?

11-14 – Perf

11-14



Scaled Speed-up – Weak Scaling

ä The scaling obtained in the context of Amdahl’s law is called
Strong Scaling [p increases, Pb. size constant]

ä Assumes the time to solve the problem on p processors is fixed;
i.e., sufficient increase in problem size. In theory:

scaled speed-up = T (W.p,1)
T (W.p,p)

ä Problem size W here is amount of sequential work (# seq.
operations).

ä Note: problem size (i.e., amount of work) increased linearly.

ä In practice, calculate scaled speed-ups by allowing the problem
size to be as large as can be fit in memory.

11-15 – Perf

11-15



Formula for scaled speed-up in practice:

SGp = ωp ×
Time for solving Q1

Time for solving Qp

where Qp = maximum size problem that can be solved on an p-
processor computer, and ωp is an adjustment factor :

ωp =
#ope’s for solving Qp

#ope’s for solving Q1

ä This sort of analysis is known as a Weak Scaling analysis

Example: Gaussian elimination (GE) If a problem of size n×n
can fit on one processor, then a problem of size (np1/2)× (np1/2)
can fit on a p-processor system (assuming memory size is proportional
to the number of PEs).

11-16 – Perf

11-16



ä Asymptotically in GE: # ope’s = O(n3) - therefore ωp ≈ p3/2.

ä Thus, when going from 1 to 16 processors (a 4 × 4 grid) the
matrix size increases by a factor of 4, so ωp = 43 = 64.

ä If it takes 1s to solve the n× n problem on one processor and
8s to solve the 4n × 4n on the 16-node machine, then the scaled
speed-up would be

SG16 = 64×
1

8
= 8 .

11-17 – Perf

11-17



-9 A certain parallel algorithm dealing with matrices is determined
to have parallel complexity T (p) = n2/p+ k ∗ p ∗ n where n is
the matrix size and k is a certain constant. The sequential algorithm
runs in time T (1) = n2. Determine the overhead function.

ä Note: In the end, you need to express everything in terms of W
not n.

-10 Following up on Lab 1, plot the scaled speed-up you obtain for
the matrix-matrix product – You can increase the size n linearly with
the number of processors (up to a maximum of 32 processes).

11-18 – Perf

11-18


