
MATRIX ALGORITHMS

• Linear algebra software and the BLAS

• Matrix-vector & matrix-matrix products

• Solving dense linear systems

• Tridiagonal linear systems
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Background & notation: matrices

ä An n ×m matrix A is an n ×m array of values in R or C
(complex matrices)

ä Notation: A ∈ Rn×m or A ∈ Cn×m

ä Operations with matrices: addition, multiplication, scaling.

ä We will consider matrix-vector products, matrix-matrix products,
and:

ä Linear systems of equations.
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Evolution of linear algebra software

ä First numerical libraries appeared in 1970s: EISPACK (eigenvalue
problems) and LINPACK (mostly linear systems)

ä Need for (performance-) optimized functions for basic linear
algebra appeared with first supercomputers: BLAS

ä Level 1 BLAS (BLAS1) : vector operations (dot products, sums,
combination of vectors)...

ä Then BLAS2 and BLAS3 followed (in the late 1980s).
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Level 2 BLAS (BLAS2) 2 nested loops. Examples:

Rootname Operation Matrix type
–GEMV y := αA∗x+ βy General A
–TRMV y = Tx General triangular T
–TRSV y = (T ∗)−1x General triangular

∗ = one of : no-operation (A∗ = A), transpose (A∗ = AT ), or
conjugate transpose (A∗ = AH)

Level 3 BLAS (BLAS3) 3 nested loops. Examples:

–GEMM C := αA∗B∗ + βC General case
–SYR2K C := αBAT + αATB + βC or Symmetric A

C := αATB + αBAT + βC
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BLAS and memory references

Efficiency of programs on high performance computers require to
account for memory traffic

Rule: For each memory reference, perform as many floating point

operations as possible.

BLAS1: in SAXPY (for example) two vectors are loaded and one
is stored: 3n memory references for 2n flops.

BLAS2: in SGEMV (matrix-vector product) a matrix and the vec-
tor are loaded and a vector is stored. ∼ n2 memory references for
∼ 2n2 flops. (assume a square matrix).

BLAS3: In SGEMM, 3 matrices are loaded and one is stored: 4n2

memory references for 2n3 flops (assume square matrices).
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Matrix-vector products (MATVECS)

Problem: To compute the product y = Ax where A is a matrix,
and x a vector.

ä The result y should end up with the same mapping to processors
as x [think of problem of doing many successive matvecs].

ä Many different situations:

• Dense case vs sparse case

• Vector processing

• Product with one vector versus several vectors at once.
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3 Ways to the matvec

= *

A          *  x =y

= *

A          *  x =y

= *

A          *  x =y

Product can be done by rows, by columns, or by diagonals.

ä The row-oriented algorithm appears natural – not the best if
saxpy’s can be done fast (vector processing)

ä Product by diagonals is useful mainly in the sparse case (e.g.,
banded matrices)

ä We will consider two different sequential “base” algorithms.
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Algorithm 1

for (i=0; i<n ; i++) {
y[i] = 0;
for (j=0; j<n; j++)

y[i] += A[i][j]*x[j] ;
}

ä Uses n dot-products

Algorithm 2

for (j=0; j<n; j++)
y[j] = 0.0;

for (j=0; j<n ; j++) {
for (i=0; i<n; i++)

y[i] += A[i][j]*x[j];
}

ä Main operations used SAXPYs: y ← y + a ∗ x
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Row-oriented mapping

P1

P0

P5

Algorithm:

1. Do an all-to-all broadcast of the subvectors xi.

2. Compute dot products y(i) = A(i, :)′ . x(:) for i in ’myPE’.

-1 What MPI operation would you use for (1) ?
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Timing model

1. Time for communication

ts log(p) + tw × n
p
× (p− 1) ≈ ts log(p) + twn

2. Time for the local multiplications
and additions:

2n
2

p

3. Total T (p) = 2n
2

p
+ ts log(p) + twn

-2 Questions:

1 Cost-optimal?
2 Standard speed-up & efficiency?
3 What is To(p)?
4 Scaled speed-up? [time-based]
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Matrix- vector products: 2-D mapping

Example of a 2-D mapping
for a 6× 6 grid
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Algorithm: [2-D mesh of processors]

1. Do a broadcast of xi in each vertical direction of the processor
mesh

2. Compute the local products of A(i, j) with x(j)

3. Add results in horizontal direction
12-11 – matrix

12-11



-3 Cost model assuming: (1) Hypercube topology - (2) Simple
broadcast (no scatter first) (3) Similar simple reduction for the sums.

-4 Speed-up, efficiency? Speed-up & Efficiency for the case when
p = n ?

-5 Scaled speed-up?
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Matrix-Matrix product

Basic sequential algorithm has three loops

Algorithm 3:

for (i=0; i<n ; i++){
for (j=0; j<n; j++) {
C[i][j] = 0;
for (k=0; k<n; k++) ;

C[i][j] += A[i][k]*B[k][j];
}

}
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ä Important observation: product can be done by blocks:

(
A00 A01

A10 A11

)
×
(
B00 B01

B10 B11

)
=

(
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

)
ä In particular, in Algorithm 3 all the X(i, j)’s (X one of A,
B, or C) can be the individual entries of the matrices involved, or
blocks (submatrices), for block algorithms.

For (k=0; k<n; k++)
C[i][j] += A[i][k]*B[k][j] // products/sums

// of submatrices

12-14 – matrix

12-14



Consequences

1. Possibility of proceeding recursively

2. Observation can be exploited to devise algorithms with better
utilization of cache

3. Can play with block-size to optimize performance [See Atlas
package]
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Broadcast Algorithm

Assume each A(i, j)
and B(i, j) is assigned
to processor P (i, j) in
a logical mesh of proces-
sors. Note: Pij must
store all Ai,∗ blocks
and all B∗,j blocks.

broadcast
all-all

broadcast
all-all

vertical direction of mesh
1. Broadcast the B[k,j]’s in 

in processor P(i,j) 

Σ  A[i,k] * B[k,j]

3. Compute the sum
izontal direction of mesh.
2. Broadcast A[i,k]’s in hor-
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A better implementation:

Use the ‘rank-one’ updates ver-
sion of matrix products.

C =
∑n

k=1A(:, k).B(k, :)

• Rank-one updates
in block form

• No issue with mem-
ory requirement

+ ..

C C

Row 1 of B Row 2 of B

C
o

lu
m

n
 1

 o
f 

A
 

+

C
o

lu
m

n
 2

 o
f 

A

ä “Row” and “Column” mean block-row and block-column

ä For k=1:n do : broadcast column→ and row ↓.
Then update: C(i, j) := C(i, j) +A(i, k) ∗B(k, j).
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Cannon’s algorithm

ä Many algorithms were developed with a “systolic” viewpoint:
using SIMD simple arithmetic and communication operations.

ä Algorithm shown next is an example. It computes the product of
2 matrices. Each time cycle, data is moved as noted and product is
performed and added to current cij.

12-18 – matrix

12-18



B*1

B*2

B*3

A1*

A2*

A3*
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Another organization (no time delays built) : Cannon’s algorithm

(a) Initial alignment of submatrices (b) After the first shift

(c) After the second shift (d) After the third shift

A11             A12              A13            A14                                 A12             A13              A14            A11

B11              B22              B33            B44                                  B21             B32              B43             B14

A22              A23             A24            A21                                  A23            A24             A21             A22

B21              B32              B43             B14                                  B31            B42             B13              B24

A33              A34              A31            A32                                  A34            A31             A32             A33

A44              A41              A42            A43                                  A41            A42            A43             A44

B41              B12               B23            B34                                   B11            B22            B33              B44

B31              B42               B13            B24                                  B41             B12              B23             B34

A13             A14               A11            A12                                 A14             A11             A12             A13

B31              B41               B13            B24                                  B41             B12              B23             B34

A24              A21              A22             A23                                 A21            A22             A23             A24

B41               B12              B23              B34                                 B11            B22             B33              B44

A31              A32               A33            A34                                A32             A33             A34             A31

B11               B22               B33             B44                                B21              B32            B43              B14

A42              A43                A44           A41                                A43              A44             A41             A42

B21               B32                B43           B14                                 B31              B42             B13              B24
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Linear Systems of equations: Background

The Problem: Given A = an n× n matrix, b ∈ Rn

Find x ∈ Rn s.t. :

Ax = b

ä x is the unknown vector, b the right-hand side, and A is
the coefficient matrix

ä Important problem: arises in many engineering and scientific
disciplines

ä Recall under what conditions the system has a unique solution.

ä Recall how to solve a triangular system
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Example:  2x1 + 4x2 + 4x3 = 6
x1 + 5x2 + 6x3 = 4
x1 + 3x2 + x3 = 8

ä Or, in matrix notation:2 4 4
1 5 6
1 3 1


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

6
4
8


︸ ︷︷ ︸
b

Ax = b

-6 Solution of above system ?
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Triangular linear systems

Example:

2 4 4
0 5 −2
0 0 2

x1

x2

x3

 =

2
1
4


ä One equation can be trivially solved: the last one. x3 = 2

ä x3 is known we can now solve the 2nd equation:

5x2 − 2x3 = 1 → 5x2 − 2× 2 = 1 → x2 = 1

ä Finally x1 can be determined similarly:

2x1 + 4x2 + 4x3 = 2→ ... → x1 = −5
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Back-Substitution algorithm

for (i=n-1; i>=0; i--){
t = b[i];
for (j=i; j<n; j++)

t -= a[i,j]*x[j];
x_i = t / a[i,i] ;

}

ä We must require that each aii 6= 0

ä Operation count?
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ä Column version of back-subsitution – useful for parallel imple-
mentation

Algorithm. Back-Substitution algorithm. Column version

for (j=n-1; j>=0; j--){
x[j] = b[j]/ a[j,j];
for (i=0; i<j-1; j++)

b[i] -= x[j] *a[i,j];
}

-7 Justify the above algorithm [Show that it does indeed give the
solution]
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Linear Systems of Equations: Gaussian Elimination

Principle of the method: We will first transform a linear system into
one that is triangular then solve. Main operation: combine rows
so that zeros appear in the required locations to make the system
triangular.

Gaussian Elimination

1. For k = 1 : n− 1 Do:
2. For i = k + 1 : n Do:
3. piv := aik/akk
4. For j := k + 1 : n+ 1 Do :
5. aij := aij − piv ∗ akj
6. End
6. End
7. End
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Row k

Pivot 

A    =k

ä Operation count: 2
3
n3 + low order terms
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Solving Dense Linear Systems of equations

ä Problem is to solve the linear system of equations:

Ax = b

where A is a an n×n matrix, b is the given right-hand side and x
is the unknown.

ä Method of choice: Gaussian elimination (or variants)

ä Can change the order of the loops and obtain a few variants of
Gaussian elimination ä Can permute the loop variables i, j and k
in 3! = 6 different ways.
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do ——
do ——

do ——
a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k)

enddo
enddo

enddo

ä Non-negligible effect on performance. For example, on vector
computers, a column variant may be preferable as it involves vector
combinations with stride one.
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GE - KIJ version

do k=1,n-1
do i=k+1,n

l(i,k)=a(i,k)/a(k,k)
do j=k+1, n

a(i,j)=a(i,j)-l(i,k)*a(k,j)
enddo

enddo
enddo
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GE – KJI variant

do k=1,n-1
// Cdiv:
do i=k+1, n

l(i,k)=a(i,k)/a(k,k)
enddo
do j = k+1, n
// Elimination:

do i=k+1, n
a(i,j)=a(i,j)-l(i,k)*a(k,j)

enddo
enddo

enddo
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not modified

Accessed and

Accessed and

not modified

Accessed
No Longer

No Longer
Accessed

Accessed
Not Yet

Not Yet
Accessed

Active

Active

Access patterns for variants of Gaussian Elimination.

-8 Can you recognize which variant is represented by each figure?
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A broadcast algorithm

Assume 1-D mapping of data – row-wise (use row-version of algo-
rithm) or column-wise (use column version)

Row version of GE can be written as

do k=1,n-1
do i=k+1,n

l(i,k) = a(i,k) / a(k,k)
a(i,k+1:n+1)=a(i,k+1:n+1)-l(i,k)*a(k,,k+1:n+1)

enddo
enddo

ä Idea : broadcast row a(k, :) to all processors at each step.
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ä Simplest
distribution of
matrix and RHS
to processors: Assign
equations i(n/p) to
(i+ 1)(n/p)− 1 to
Pi

bA

P0 (Idle)
P1 (Idle)
P2 (Active)
P3 (Active)

Pk−1 (Active)

@
@

@
@
@
@

ä Method: at each step broacast pivot row to all processors as
needed.

ä Difficulty: too much idle time (algorithm is not cost optimal)

-9 Cost analysis ?
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ä Better data distribution: cyclic mapping or “interleaving”

@
@
@
@
@
@
@
@
@
@
@
@

P0row 0
P1row 1
P2row 2
P3row 3
P0row 4
P1row 5
P2row 6
P3row 7
..
..

Gaussian Elimination with Interleaved Rows
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A pipelined algorithm

ä Assumes only a ring (actually a
linear array) of p processors
ä Communication primitives
used:

Send(east,x) Recv(west,x)

ä Main idea: do not perform the j-th step of Gaussian at same
time. [A processor may be executing the 1st step while another one
may be executing the 10th step]. Algorithm driven by availability of
pivot row (or column)
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ä Sketch of column-version [KJI] of Algorithm.

% Dimensions: n=r*p.
% Columns C(1:r) held in myid are
% A(:,myid+j*p), j=0,1,...,r-1

j=0;
do k=1,n

% if (mod(k,p) = myid) then myid holds pivot column
if mod(k,p)=myid then

j=j+1;
cdiv(C(k+1:n,j),C(k,j));
send(east,C(k+1:n,j),p);
piv_col(k+1:n)=C(k+1:n,j);

else
receive(west,piv_col(k+1:n),counter);

% counter used to limit the number of times
% pivot column is sent

counter=counter-1;
if counter>1 then

% Immediately forward it to next PE
send(east,piv_col(k+1:n),counter) ;

endif
endif
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% Only now do eliminations
do jj=j+1,r

saxpy(C(k+1:n,jj),piv_col(k+1:n),C(k,jj));
enddo

enddo
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2-D mapping

00 0001 0102 0203 03

10 1011 1112 1213 13

20 2021 2122 2223 23

30 3031 3132 3233 33

00 0001 0102 0203 03

10 1011 1112 1213 13

20 2021 2122 2223 23

30 3031 3132 3233 33

Interleaving of a linear system in a 4 x 4 processor grid.
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Solving Tridiagonal Linear Systems of equations

Suppose that A is
tridiagonal:

A =


a11 a12

a21 a22 a23

a32 a33 a34

a43 a44 a45

a54 a55


ä Many operations can be saved by ignoring the zeros.

Storage: only 3 diagonals to be stored + right hand side. [note:
one diagonal can be avoided by scaling aii to 1 during elimination.
→ ’the Thomas algorithm’]

Change of notation System Ax = r with

ai,i−1 = ai, ai,i = di ai,i+1 = ci
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A =


d1 c1

a2 d2 c2

a3 d3 c3
. . . . . . . . .
an dn

 r =


r1

r2

r3
...
rn


function [r] = trid (a, d, c, r)
%% function [r] = trid (a, d, c, r)
%% solves A x = r, where A = tridiag[a, d, c]
n = length(d);
for k=2:n

piv = a(k)/d(k-1);
d(k) = d(k) - piv*c(k-1);
r(k) = r(k) - piv*r(k-1);

end
r(n) = r(n) / d(n);
for j=n-1:-1:1

r(j) = (r(j) - c(j)*r(j+1))/d(j);
end

12-41 – tridiag

12-41



Parallel algorithm: Substructuring

ä Algorithm described next is due to Wang – a variant of an earlier
method by Kuck and Sameh. In what follows j is the processor
number, and m = n/p. See following figures.

Forward elimination: In Proc. j = 2, · · · , p : Forward-Eliminate
unknowns (j−1)∗m+1, ... jm, to get rid of subdiagonal entries

Backward elimination: In Proc j = 1, · · · , p − 1 Backward-
Elimination to zero out super-diagonal entries in rows j ×m− 2 –
(j − 1)×m+ 1

Solve Residual System: Observe that unknowns jm− 1, jm for
j = {1, 2, ..., p − 1}, satisfy an independent tridiagonal system
of size ((2(p− 1)× (2(p− 1))). ä Solve this system

Back-substitute: compute other unknowns by substitution
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A tridiagonal matrix of dimension 20.
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Result of forward elimination
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Result of backward elimination
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← Column order2 1 4 3 6 5

Final independent tridiagonal system to solve
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