
MATRIX ALGORITHMS

• Linear algebra software and the BLAS

• Matrix-vector & matrix-matrix products

• Solving dense linear systems

• Tridiagonal linear systems

12-1

Background & notation: matrices

ä An n ×m matrix A is an n ×m array of values in R or C
(complex matrices)

ä Notation: A ∈ Rn×m or A ∈ Cn×m

ä Operations with matrices: addition, multiplication, scaling.

ä We will consider matrix-vector products, matrix-matrix products,
and:

ä Linear systems of equations.

12-2 – matrix

12-2

Evolution of linear algebra software

ä First numerical libraries appeared in 1970s: EISPACK (eigenvalue
problems) and LINPACK (mostly linear systems)

ä Need for (performance-) optimized functions for basic linear
algebra appeared with first supercomputers: BLAS

ä Level 1 BLAS (BLAS1) : vector operations (dot products, sums,
combination of vectors)...

ä Then BLAS2 and BLAS3 followed (in the late 1980s).

12-3 – matrix

12-3

Level 2 BLAS (BLAS2) 2 nested loops. Examples:

Rootname Operation Matrix type
–GEMV y := αA∗x+ βy General A
–TRMV y = Tx General triangular T
–TRSV y = (T ∗)−1x General triangular

∗ = one of : no-operation (A∗ = A), transpose (A∗ = AT), or
conjugate transpose (A∗ = AH)

Level 3 BLAS (BLAS3) 3 nested loops. Examples:

–GEMM C := αA∗B∗ + βC General case
–SYR2K C := αBAT + αATB + βC or Symmetric A

C := αATB + αBAT + βC

12-4 – matrix

12-4

BLAS and memory references

Efficiency of programs on high performance computers require to
account for memory traffic

Rule: For each memory reference, perform as many floating point

operations as possible.

BLAS1: in SAXPY (for example) two vectors are loaded and one
is stored: 3n memory references for 2n flops.

BLAS2: in SGEMV (matrix-vector product) a matrix and the vec-
tor are loaded and a vector is stored. ∼ n2 memory references for
∼ 2n2 flops. (assume a square matrix).

BLAS3: In SGEMM, 3 matrices are loaded and one is stored: 4n2

memory references for 2n3 flops (assume square matrices).

12-5 – matrix

12-5

Matrix-vector products (MATVECS)

Problem: To compute the product y = Ax where A is a matrix,
and x a vector.

ä The result y should end up with the same mapping to processors
as x [think of problem of doing many successive matvecs].

ä Many different situations:

• Dense case vs sparse case

• Vector processing

• Product with one vector versus several vectors at once.

12-6 – matrix

12-6

3 Ways to the matvec

= *

A * x =y

= *

A * x =y

= *

A * x =y

Product can be done by rows, by columns, or by diagonals.

ä The row-oriented algorithm appears natural – not the best if
saxpy’s can be done fast (vector processing)

ä Product by diagonals is useful mainly in the sparse case (e.g.,
banded matrices)

ä We will consider two different sequential “base” algorithms.

12-7 – matrix

12-7

Algorithm 1

for (i=0; i<n ; i++) {
y[i] = 0;
for (j=0; j<n; j++)

y[i] += A[i][j]*x[j] ;
}

ä Uses n dot-products

Algorithm 2

for (j=0; j<n; j++)
y[j] = 0.0;

for (j=0; j<n ; j++) {
for (i=0; i<n; i++)

y[i] += A[i][j]*x[j];
}

ä Main operations used SAXPYs: y ← y + a ∗ x

12-8 – matrix

12-8

Row-oriented mapping

P1

P0

P5

Algorithm:

1. Do an all-to-all broadcast of the subvectors xi.

2. Compute dot products y(i) = A(i, :)′ . x(:) for i in ’myPE’.

-1 What MPI operation would you use for (1) ?

12-9 – matrix

12-9

Timing model

1. Time for communication

ts log(p) + tw × n
p
× (p− 1) ≈ ts log(p) + twn

2. Time for the local multiplications
and additions:

2n
2

p

3. Total T (p) = 2n
2

p
+ ts log(p) + twn

-2 Questions:

1 Cost-optimal?
2 Standard speed-up & efficiency?
3 What is To(p)?
4 Scaled speed-up? [time-based]

12-10 – matrix

12-10

Matrix- vector products: 2-D mapping

Example of a 2-D mapping
for a 6× 6 grid

. .

. .P

P P

P

P

P P00 01 05

10 P11

20

50 55

P15

P

P

P

00

11

55

.

.

.

Algorithm: [2-D mesh of processors]

1. Do a broadcast of xi in each vertical direction of the processor
mesh

2. Compute the local products of A(i, j) with x(j)

3. Add results in horizontal direction
12-11 – matrix

12-11

-3 Cost model assuming: (1) Hypercube topology - (2) Simple
broadcast (no scatter first) (3) Similar simple reduction for the sums.

-4 Speed-up, efficiency? Speed-up & Efficiency for the case when
p = n ?

-5 Scaled speed-up?

12-12 – matrix

12-12

Matrix-Matrix product

Basic sequential algorithm has three loops

Algorithm 3:

for (i=0; i<n ; i++){
for (j=0; j<n; j++) {
C[i][j] = 0;
for (k=0; k<n; k++) ;

C[i][j] += A[i][k]*B[k][j];
}

}

12-13 – matrix

12-13

ä Important observation: product can be done by blocks:

(
A00 A01

A10 A11

)
×
(
B00 B01

B10 B11

)
=

(
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

)
ä In particular, in Algorithm 3 all the X(i, j)’s (X one of A,
B, or C) can be the individual entries of the matrices involved, or
blocks (submatrices), for block algorithms.

For (k=0; k<n; k++)
C[i][j] += A[i][k]*B[k][j] // products/sums

// of submatrices

12-14 – matrix

12-14

Consequences

1. Possibility of proceeding recursively

2. Observation can be exploited to devise algorithms with better
utilization of cache

3. Can play with block-size to optimize performance [See Atlas
package]

12-15 – matrix

12-15

Broadcast Algorithm

Assume each A(i, j)
and B(i, j) is assigned
to processor P (i, j) in
a logical mesh of proces-
sors. Note: Pij must
store all Ai,∗ blocks
and all B∗,j blocks.

broadcast
all-all

broadcast
all-all

vertical direction of mesh
1. Broadcast the B[k,j]’s in

in processor P(i,j)

Σ A[i,k] * B[k,j]

3. Compute the sum
izontal direction of mesh.
2. Broadcast A[i,k]’s in hor-

12-16 – matrix

12-16

A better implementation:

Use the ‘rank-one’ updates ver-
sion of matrix products.

C =
∑n

k=1A(:, k).B(k, :)

• Rank-one updates
in block form

• No issue with mem-
ory requirement

+ ..

C C

Row 1 of B Row 2 of B

C
o

lu
m

n
 1

 o
f

A

+

C
o

lu
m

n
 2

 o
f

A

ä “Row” and “Column” mean block-row and block-column

ä For k=1:n do : broadcast column→ and row ↓.
Then update: C(i, j) := C(i, j) +A(i, k) ∗B(k, j).

12-17 – matrix

12-17

Cannon’s algorithm

ä Many algorithms were developed with a “systolic” viewpoint:
using SIMD simple arithmetic and communication operations.

ä Algorithm shown next is an example. It computes the product of
2 matrices. Each time cycle, data is moved as noted and product is
performed and added to current cij.

12-18 – matrix

12-18

B*1

B*2

B*3

A1*

A2*

A3*

12-19 – matrix

12-19

Another organization (no time delays built) : Cannon’s algorithm

(a) Initial alignment of submatrices (b) After the first shift

(c) After the second shift (d) After the third shift

A11 A12 A13 A14 A12 A13 A14 A11

B11 B22 B33 B44 B21 B32 B43 B14

A22 A23 A24 A21 A23 A24 A21 A22

B21 B32 B43 B14 B31 B42 B13 B24

A33 A34 A31 A32 A34 A31 A32 A33

A44 A41 A42 A43 A41 A42 A43 A44

B41 B12 B23 B34 B11 B22 B33 B44

B31 B42 B13 B24 B41 B12 B23 B34

A13 A14 A11 A12 A14 A11 A12 A13

B31 B41 B13 B24 B41 B12 B23 B34

A24 A21 A22 A23 A21 A22 A23 A24

B41 B12 B23 B34 B11 B22 B33 B44

A31 A32 A33 A34 A32 A33 A34 A31

B11 B22 B33 B44 B21 B32 B43 B14

A42 A43 A44 A41 A43 A44 A41 A42

B21 B32 B43 B14 B31 B42 B13 B24

12-20 – matrix

12-20

Linear Systems of equations: Background

The Problem: Given A = an n× n matrix, b ∈ Rn

Find x ∈ Rn s.t. :

Ax = b

ä x is the unknown vector, b the right-hand side, and A is
the coefficient matrix

ä Important problem: arises in many engineering and scientific
disciplines

ä Recall under what conditions the system has a unique solution.

ä Recall how to solve a triangular system

12-21 – SystemsBG

12-21

Example: 2x1 + 4x2 + 4x3 = 6
x1 + 5x2 + 6x3 = 4
x1 + 3x2 + x3 = 8

ä Or, in matrix notation:2 4 4
1 5 6
1 3 1

︸ ︷︷ ︸

A

x1

x2

x3

︸ ︷︷ ︸

x

=

6
4
8

︸ ︷︷ ︸
b

Ax = b

-6 Solution of above system ?

12-22 – SystemsBG

12-22

Triangular linear systems

Example:

2 4 4
0 5 −2
0 0 2

x1

x2

x3

 =

2
1
4

ä One equation can be trivially solved: the last one. x3 = 2

ä x3 is known we can now solve the 2nd equation:

5x2 − 2x3 = 1 → 5x2 − 2× 2 = 1 → x2 = 1

ä Finally x1 can be determined similarly:

2x1 + 4x2 + 4x3 = 2→ ... → x1 = −5

12-23 – SystemsBG

12-23

Back-Substitution algorithm

for (i=n-1; i>=0; i--){
t = b[i];
for (j=i; j<n; j++)

t -= a[i,j]*x[j];
x_i = t / a[i,i] ;

}

ä We must require that each aii 6= 0

ä Operation count?

12-24 – SystemsBG

12-24

ä Column version of back-subsitution – useful for parallel imple-
mentation

Algorithm. Back-Substitution algorithm. Column version

for (j=n-1; j>=0; j--){
x[j] = b[j]/ a[j,j];
for (i=0; i<j-1; j++)

b[i] -= x[j] *a[i,j];
}

-7 Justify the above algorithm [Show that it does indeed give the
solution]

12-25 – SystemsBG

12-25

Linear Systems of Equations: Gaussian Elimination

Principle of the method: We will first transform a linear system into
one that is triangular then solve. Main operation: combine rows
so that zeros appear in the required locations to make the system
triangular.

Gaussian Elimination

1. For k = 1 : n− 1 Do:
2. For i = k + 1 : n Do:
3. piv := aik/akk
4. For j := k + 1 : n+ 1 Do :
5. aij := aij − piv ∗ akj
6. End
6. End
7. End

12-26

Row k

Pivot

A =k

ä Operation count: 2
3
n3 + low order terms

12-27 – SystemsBG

12-27

Solving Dense Linear Systems of equations

ä Problem is to solve the linear system of equations:

Ax = b

where A is a an n×n matrix, b is the given right-hand side and x
is the unknown.

ä Method of choice: Gaussian elimination (or variants)

ä Can change the order of the loops and obtain a few variants of
Gaussian elimination ä Can permute the loop variables i, j and k
in 3! = 6 different ways.

12-28 – GE

12-28

do ——
do ——

do ——
a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k)

enddo
enddo

enddo

ä Non-negligible effect on performance. For example, on vector
computers, a column variant may be preferable as it involves vector
combinations with stride one.

12-29 – GE

12-29

GE - KIJ version

do k=1,n-1
do i=k+1,n

l(i,k)=a(i,k)/a(k,k)
do j=k+1, n

a(i,j)=a(i,j)-l(i,k)*a(k,j)
enddo

enddo
enddo

12-30 – GE

12-30

GE – KJI variant

do k=1,n-1
// Cdiv:
do i=k+1, n

l(i,k)=a(i,k)/a(k,k)
enddo
do j = k+1, n
// Elimination:

do i=k+1, n
a(i,j)=a(i,j)-l(i,k)*a(k,j)

enddo
enddo

enddo

12-31 – GE

12-31

not modified

Accessed and

Accessed and

not modified

Accessed
No Longer

No Longer
Accessed

Accessed
Not Yet

Not Yet
Accessed

Active

Active

Access patterns for variants of Gaussian Elimination.

-8 Can you recognize which variant is represented by each figure?

12-32 – GE

12-32

A broadcast algorithm

Assume 1-D mapping of data – row-wise (use row-version of algo-
rithm) or column-wise (use column version)

Row version of GE can be written as

do k=1,n-1
do i=k+1,n

l(i,k) = a(i,k) / a(k,k)
a(i,k+1:n+1)=a(i,k+1:n+1)-l(i,k)*a(k,,k+1:n+1)

enddo
enddo

ä Idea : broadcast row a(k, :) to all processors at each step.

12-33 – GE

12-33

ä Simplest
distribution of
matrix and RHS
to processors: Assign
equations i(n/p) to
(i+ 1)(n/p)− 1 to
Pi

bA

P0 (Idle)
P1 (Idle)
P2 (Active)
P3 (Active)

Pk−1 (Active)

@
@

@
@
@
@

ä Method: at each step broacast pivot row to all processors as
needed.

ä Difficulty: too much idle time (algorithm is not cost optimal)

-9 Cost analysis ?

12-34 – GE

12-34

ä Better data distribution: cyclic mapping or “interleaving”

@
@
@
@
@
@
@
@
@
@
@
@

P0row 0
P1row 1
P2row 2
P3row 3
P0row 4
P1row 5
P2row 6
P3row 7
..
..

Gaussian Elimination with Interleaved Rows

12-35 – GE

12-35

A pipelined algorithm

ä Assumes only a ring (actually a
linear array) of p processors
ä Communication primitives
used:

Send(east,x) Recv(west,x)

ä Main idea: do not perform the j-th step of Gaussian at same
time. [A processor may be executing the 1st step while another one
may be executing the 10th step]. Algorithm driven by availability of
pivot row (or column)

12-36 – GE

12-36

ä Sketch of column-version [KJI] of Algorithm.

% Dimensions: n=r*p.
% Columns C(1:r) held in myid are
% A(:,myid+j*p), j=0,1,...,r-1

j=0;
do k=1,n

% if (mod(k,p) = myid) then myid holds pivot column
if mod(k,p)=myid then

j=j+1;
cdiv(C(k+1:n,j),C(k,j));
send(east,C(k+1:n,j),p);
piv_col(k+1:n)=C(k+1:n,j);

else
receive(west,piv_col(k+1:n),counter);

% counter used to limit the number of times
% pivot column is sent

counter=counter-1;
if counter>1 then

% Immediately forward it to next PE
send(east,piv_col(k+1:n),counter) ;

endif
endif

12-37

% Only now do eliminations
do jj=j+1,r

saxpy(C(k+1:n,jj),piv_col(k+1:n),C(k,jj));
enddo

enddo

12-38

2-D mapping

00 0001 0102 0203 03

10 1011 1112 1213 13

20 2021 2122 2223 23

30 3031 3132 3233 33

00 0001 0102 0203 03

10 1011 1112 1213 13

20 2021 2122 2223 23

30 3031 3132 3233 33

Interleaving of a linear system in a 4 x 4 processor grid.
12-39 – GE

12-39

Solving Tridiagonal Linear Systems of equations

Suppose that A is
tridiagonal:

A =

a11 a12

a21 a22 a23

a32 a33 a34

a43 a44 a45

a54 a55

ä Many operations can be saved by ignoring the zeros.

Storage: only 3 diagonals to be stored + right hand side. [note:
one diagonal can be avoided by scaling aii to 1 during elimination.
→ ’the Thomas algorithm’]

Change of notation System Ax = r with

ai,i−1 = ai, ai,i = di ai,i+1 = ci

12-40 – tridiag

12-40

A =

d1 c1

a2 d2 c2

a3 d3 c3
.
an dn

 r =

r1

r2

r3
...
rn

function [r] = trid (a, d, c, r)
%% function [r] = trid (a, d, c, r)
%% solves A x = r, where A = tridiag[a, d, c]
n = length(d);
for k=2:n

piv = a(k)/d(k-1);
d(k) = d(k) - piv*c(k-1);
r(k) = r(k) - piv*r(k-1);

end
r(n) = r(n) / d(n);
for j=n-1:-1:1

r(j) = (r(j) - c(j)*r(j+1))/d(j);
end

12-41 – tridiag

12-41

Parallel algorithm: Substructuring

ä Algorithm described next is due to Wang – a variant of an earlier
method by Kuck and Sameh. In what follows j is the processor
number, and m = n/p. See following figures.

Forward elimination: In Proc. j = 2, · · · , p : Forward-Eliminate
unknowns (j−1)∗m+1, ... jm, to get rid of subdiagonal entries

Backward elimination: In Proc j = 1, · · · , p − 1 Backward-
Elimination to zero out super-diagonal entries in rows j ×m− 2 –
(j − 1)×m+ 1

Solve Residual System: Observe that unknowns jm− 1, jm for
j = {1, 2, ..., p − 1}, satisfy an independent tridiagonal system
of size ((2(p− 1)× (2(p− 1))). ä Solve this system

Back-substitute: compute other unknowns by substitution

12-42 – tridiag

12-42

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Processor 1

Processor 2

Processor 3

Processor 4

A tridiagonal matrix of dimension 20.

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

Processor 1

Processor 2

Processor 3

Processor 4

Result of forward elimination

12-43 – tridiag

12-43

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x

x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

Processor 1

Processor 2

Processor 3

Processor 4

Result of backward elimination

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Processor 1

Processor 2

Processor 3

Processor 4

← Column order2 1 4 3 6 5

Final independent tridiagonal system to solve

12-44 – tridiag

12-44

