Parallel Sorting Algorithms

e Intro: Parallelizing standard sorting algorithms

Bubble sort, odd-even sort

Quicksort

e Odd-even Merge-sort

Sorting Networks and bitonic sort

13-1

The problem and some background

» Sorting = to order data in some order [e.g. increasingly]

Problem: Given the array A = [a1,...,ay] sort its entries in
increasing order.

Example
A=1[3,6,4,1,39>» B:=[1,3,3,4,6,9]
» The keys aq, .., a can be integers, real numbers, etc..

» There are sequential algorithms which cost O(n?), O(nlogn),
oreven O(n). They all have different characteristics and advantages
and disadvantages.

» Sorting is important and is part of many applications

13-2 — Sorting0

13-2

» Results known in sequential case: cannot sort 7 numbers in less
than O(n log n) comparisons - by comparing keys.

» Mergesort has lowest theoretical complexity

» Quicksort - is best in practice [even though it can potentially lead
to O(n?) time]

For illustrations, we assume we have only positive integers to sort [no
loss of generality]

13-3 — Sorting0

13-3

Assumptions on data

» Need to make assumptions on where the data is initially and
where it should end at the end. Most common:

Before sorting Data is distributed on the nodes —
After sorting Sorted sub-list should be on each node

Sub-lists are globally ordered in some specific way. [recall Lab2.] —

13-4 — Sorting0

13-4

What speed- can we expect?

» Recall O(nlogmn) optimal for any sequential sorting without
using specific properties of keys.

» Best time we can expect based upon a sequential sorting algorithm
using 7@ processors is

O(nlogn
Izpmn ::‘_E_______z

= O(logn)

» Difficult to achieve. Do-able but with a very high pre-factor —

» Brute force approach — uses a non cost-optimal method

» For each key a, count the number of keys that are < a. This
gives the position where a goes in the sorted list

for (i = 0; i < n; i++) {

k = 0;
for (j = 0; j < n; j++){
if (aljl < alil) k++;

}
b[k] = alil;

3

What happens if there are duplicates? How to fix this?
Best time that can be achieved? Needed resources?

= Sorting0 130 — Sorting0
Step 0: <-————- A —————— > <———== B —=——=>
Compare Exchange s s 7 o P
» Let a and b be two items in a list. Compare @ and b. If a > b c: ———————————————————]

then swap a and b.

» Can be generalized to situation when a are b are sublists A and
B [e.g., situation when an array is split into n/p equal parts]

Background: | Merging two sorted lists

“Given two sorted list A and B, create a sorted list C which
contains the items of A and B”

» Termed a Merge operation.

13-7 — Sorting0

» Move Min (A*B*) to C, then remove the element just moved
from its array. Repeat. In the end append left-over to C

13-8

l1 3 5 7 9 1012 4 6 8|

C: []

Step 1: <-————- A - > <-=———- B -———>
I 3 567 9 10 [2 4 6 8|

¢c: [1-————]

Step 2: < -———- A - > <-—-- B -——>
| 3 5 7 9 10 | 4 6 8|

c: [1 2-——— o]

Step 9 <————= A - > <-——- B -—>
| 9 10 | I

A~~~

append rest of A

13-9 — Sorting0

13-9

Compare-Split

Problem: Py and P; each has 1 sublist.
combined list in Py, the other half in P;.

Want lower half of

Solution: (1) Exchange the sublists. Each PE has combined list.
(2) Merge the combined list in each PE; (3) Retain the lower part in

P, and upper part in P;.

[2[7]9 [112
[1Te[8[1113 =——= [2[7[9 [10[12) [e[8[1113

Exchange sublists

[1]2]6]7[8 [o[1011[12[t3] [1[2[6]7[8 [9[10[11fi2fi3] [1]2][6[7[8]

Merge 2 sublists

Keep low part
of merged list
13-10

[1T6[8[1113
[2[7]9 T10[12

Processor s have same 2 lists

Keep upper part
of merged list

— Sorting0

13-10

Bubble Sort: | [sequential]

* First, largest number moved to the end of list by a series of compares
and exchanges: a, as, as,as, ..., an_1, ay.

* Repeat with sequence a1, -+ ,a,_1.
* Larger numbers move toward end [like bubbles]
for (i = 1; i < mn; i++) {
for (j = 0; j < n-i; j++)
compare_exch(&aljl,&alj+1]);
» O(n?) comparisons.

Several phases [instances of outer

Parallel Implementation

loop] can run in parallel — as long as
one phase does not overtake next

13-11 — Sorting0

13-11

awil]

g
§

' Phase4 Phase3

13-12

compare
B N P

Exchange ope.

— Sorting0

13-12

Odd-even Sort

» Variation of bubble sort — Two alternating phases, even phase
and odd phase.

Even phase | Even-numbered keys (a2;) are compare- exchanged

with next odd-numbered keys (a@2;1)

Odd phase | Odd-numbered keys (a2;—1) are compare - exchanged

with next even-numbered keys indices (as;)

» Requires n steps

» For p = n, efficiency is log(n) /n [with Quicksort on one PE]
» Can be implemented for p < n.

13-13 — Sorting0

13-13

lllustration for casen = p = 8

P P B P P PR P P

KO O R
L1)) k= O
L0 oo oo kO
30 OO0 O O O
KO R R
L1 O) k= O
KO O R
0 X0 O O O
_—« compare
~—" Exchange ope.
1314 ~ Sorting0

13-14

Odd-even Sort- general case n > p

» Given p sublists of n/p keys in each processor
» Sort each part in each processor —

» Then perform odd-even algorithm in which each compare-exchange
(pairs of items) is replaced by a compare-split (pairs of sublists)

Total Cost: Let m = n/p
* Initial sort: O(m logm)

* p phases (p/2 odd + p/2 even) of exchanges followed by merges:
O(p X m) = O(n) for communication + same thing for merge.

13-15 — Sorting0

13-15

* Total T'(n,p) = O(% log %) + O(n).

* Efficiency

E(n,p) =

logn logn

1+0 () - 0 (i)

» To keep efficiency constant we need m to increase exponentially
with p.

» Very poor scalability — works fine when . >> p.

13-16 — Sorting0

13-16

Quick-Sort — Background

» One of the most efficient algorithms in practice
» Worst case performace = O(n?)

» Average case performance = O(n logs,)

Main idea of QuickSort: | Divide and conquer

Pivot: Select a pivot element t = a(k)
a(mid) = t;
Split: Rearrange keysso that: | a(2) <t if t<mid; and
a(t)>t if i>mid
Recursive call: Call QuickSort on the two subsets
A1y .oy Amid—1 ANd Aridi1y -5 An

13-17 — Sorting0

13-17

Main ingredient of QuickSort: Split

» Select an element from the array, e.g., © = aq;
» Start with split-point = 1. Call sp the split-point.

» Scan array from 2 to n, and whenever an element a; smaller than
x is found, add one to sp and swap a; and asp.

» In the end swap a; and as,.

Pseudocode for split

sp = 1;
x = alsp];
for j = sp+tl to n do:
if (alj] < x) swap al++sp] and alj];
endfor
swap al[l] and alsp]

13-18 — Sorting0

13-18

e Let A=[10129 155 17 8] and pivot = 1.

>10< 12x 9 16 5 17 8 --> j=2: sp =1 no sw
>10< 12 9% 15 5 17 8 --> j=3: sp+=1 & swap —>
10 >9< 12 16%x 5 17 8 --> j=4: no change
10 >9< 12 15 5% 17 8 --> j=b: sp+=1 & swap —>
10 9 >6< 15 12 17* 8 -=-> j=6: no change
10 9 >b< 156 12 17 8%--> j=7: sp+=1 & swap —>
S

10 9 5 >8< 12 17 15 --> Swap a(l) and a(sp):

» Quick-sort processes the lists [8 9 5] and [12 17 15] recursively.

13-19 — Sorting0

13-19

Parallelizing Quick-Sort

» Trivial implementation : Use a tree structure —

Important: Assumes Data is initially on one processor.

Steps:

1. In PEO: Find a splitting key.

2. In PEO: Split array in two parts

3. In PEO: Send one half of the data on to PEL.

4. Repeat above *recursively* for sublists in PEO and PE1

13-20 — Sorting0

13-20

[5]3ls]of62]4]7]

N
!@|3|2|5\ !@|8|9|7\

E @- .\A’\

@EE -@

» Major limitation: initial step takes O(n) - it is done on one
processor. Total is O(n) - speed-up is at most log n.

» This is because data is assumed to be initially in one PE

13-21 — Sorting0

13-21

» Practical versions in which list is initially split into p Processors:
use the hypercube model [See pages 8-1 to 8-3 of lecture notes # 8
for an illustration]

» Recursively sort halves. Message passing version involves explicit
exchange of data.

» Shared memory versions are easy: (1) do a local split (2) rearrange
whole array (3) subdivide the 2 halves into p/2 parts and (4) decide
which processors will work on each of the subparts.

13-22 — Sorting0

13-22

