
Parallel Sorting Algorithms

• Intro: Parallelizing standard sorting algorithms

• Bubble sort, odd-even sort

• Quicksort

• Odd-even Merge-sort

• Sorting Networks and bitonic sort

13-1

The problem and some background

ä Sorting = to order data in some order [e.g. increasingly]

Problem: Given the array A = [a1, . . . , an] sort its entries in
increasing order.

Example

A= [3, 6, 4, 1, 3, 9] ä B := [1, 3, 3, 4, 6, 9]

ä The keys a1, .., ak can be integers, real numbers, etc..

ä There are sequential algorithms which cost O(n2), O(n logn),
or even O(n). They all have different characteristics and advantages
and disadvantages.

ä Sorting is important and is part of many applications

13-2 – Sorting0

13-2

ä Results known in sequential case: cannot sort n numbers in less
than O(n logn) comparisons - by comparing keys.

ä Mergesort has lowest theoretical complexity

ä Quicksort - is best in practice [even though it can potentially lead
to O(n2) time]

For illustrations, we assume we have only positive integers to sort [no
loss of generality]

13-3 – Sorting0

13-3

Assumptions on data

ä Need to make assumptions on where the data is initially and
where it should end at the end. Most common:

Before sorting Data is distributed on the nodes –

After sorting Sorted sub-list should be on each node

Sub-lists are globally ordered in some specific way. [recall Lab2.] –

13-4 – Sorting0

13-4

What speed- can we expect?

ä Recall O(n logn) optimal for any sequential sorting without
using specific properties of keys.

ä Best time we can expect based upon a sequential sorting algorithm
using n processors is

Topt,n =
O(n logn)

n
= O(logn)

ä Difficult to achieve. Do-able but with a very high pre-factor –

13-5 – Sorting0

13-5

Rank-sort

ä Brute force approach – uses a non cost-optimal method

ä For each key a, count the number of keys that are ≤ a. This
gives the position where a goes in the sorted list

for (i = 0; i < n; i++) {
k = 0;
for (j = 0; j < n; j++){

if (a[j] < a[i]) k++;
}
b[k] = a[i];

}

-1 What happens if there are duplicates? How to fix this?

-2 Best time that can be achieved? Needed resources?

13-6 – Sorting0

13-6

Compare Exchange

ä Let a and b be two items in a list. Compare a and b. If a > b
then swap a and b.

ä Can be generalized to situation when a are b are sublists A and
B [e.g., situation when an array is split into n/p equal parts]

Background: Merging two sorted lists

“Given two sorted list A and B, create a sorted list C which
contains the items of A and B”

ä Termed a Merge operation.

13-7 – Sorting0

13-7

Step 0: <------ A ---------> <---- B ---->
| 1* 3 5 7 9 10 | 2* 4 6 8 |

C: [----------------------------------]

ä Move Min (A*,B*) to C, then remove the element just moved
from its array. Repeat. In the end append left-over to C

13-8

Step 0: <------ A ---------> <---- B ---->
| 1 3 5 7 9 10 | 2 4 6 8 |

C: [----------------------------------]
Step 1: <------ A ---------> <---- B ---->

| 3 5 7 9 10 | 2 4 6 8 |
C: [1--------------------------------]

Step 2: < ----- A ---------> <---- B ---->
| 3 5 7 9 10 | 4 6 8 |

C: [1 2-----------------------------]
....
Step 9 : <----- A ---------> <---- B --->

| 9 10 | |
C: [1 2 3 5 6 7 8 9 10]

^^^^^^
append rest of A

13-9 – Sorting0

13-9

Compare-Split

Problem: P0 and P1 each has 1 sublist. Want lower half of
combined list in P0, the other half in P1.

Solution: (1) Exchange the sublists. Each PE has combined list.
(2) Merge the combined list in each PE; (3) Retain the lower part in
P0 and upper part in P1.

1 6 8 11 13 2 7 9 10 12

1P0 P

1 6 8 11 13 2 7 9 10 12

1 6 8 11 132 7 9 10 12

1P0 P

1 6 7 8 10 12 132 9 11 1 6 7 8 10 12 132 9 11 1 6 7 82 10 12 139 11

1P0 P1P0 P

Exchange sublists Processors have same 2 lists

Merge 2 sublists Keep low part
of merged list

Keep upper
of merged list

part

13-10 – Sorting0

13-10

Bubble Sort: [sequential]

* First, largest number moved to the end of list by a series of compares
and exchanges: a1, a2, a2, a3, ..., an−1, an.

* Repeat with sequence a1, · · · , an−1.

* Larger numbers move toward end [like bubbles]

for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++)

compare_exch(&a[j],&a[j+1]);

ä O(n2) comparisons.

Parallel Implementation
Several phases [instances of outer
loop] can run in parallel – as long as
one phase does not overtake next

13-11 – Sorting0

13-11

 compare
Exchange ope.

Phase 4 Phase 3 Phase 2 Phase 1

T
im

e

13-12 – Sorting0

13-12

Odd-even Sort

ä Variation of bubble sort – Two alternating phases, even phase
and odd phase.

Even phase Even-numbered keys (a2i) are compare- exchanged

with next odd-numbered keys (a2i+1)

Odd phase Odd-numbered keys (a2i−1) are compare - exchanged

with next even-numbered keys indices (a2i)

ä Requires n steps

ä For p = n, efficiency is log(n)/n [with Quicksort on one PE]

ä Can be implemented for p ≤ n.

13-13 – Sorting0

13-13

Illustration for case n = p = 8

 compare
Exchange ope.

P P P
0

P
1 2

P
3

P
4

P
5 6

P
7

T
im

e

13-14 – Sorting0

13-14

Odd-even Sort- general case n > p

ä Given p sublists of n/p keys in each processor

ä Sort each part in each processor –

ä Then perform odd-even algorithm in which each compare-exchange
(pairs of items) is replaced by a compare-split (pairs of sublists)

Total Cost: Let m = n/p

* Initial sort: O(m logm)

* p phases (p/2 odd + p/2 even) of exchanges followed by merges:
O(p × m) = O(n) for communication + same thing for merge.

13-15 – Sorting0

13-15

* Total T (n, p) = O(n
p
log n

p
) + O(n).

* Efficiency

E(n, p) =
1

1 + O
(

p
logn

)
− O

(
log p
logn

)

ä To keep efficiency constant we need n to increase exponentially
with p.

ä Very poor scalability – works fine when n � p.

13-16 – Sorting0

13-16

Quick-Sort – Background

ä One of the most efficient algorithms in practice

ä Worst case performace = O(n2)

ä Average case performance = O(n log2)

Main idea of QuickSort: Divide and conquer

Pivot: Select a pivot element t = a(k)

Split: Rearrange keys so that:
a(mid) = t;
a(i) <t if i<mid; and
a(i)>t if i>mid

Recursive call: Call QuickSort on the two subsets
a1, . . . , amid−1 and amid+1, . . . , an

13-17 – Sorting0

13-17

Main ingredient of QuickSort: Split

ä Select an element from the array, e.g., x = a1;

ä Start with split-point = 1. Call sp the split-point.

ä Scan array from 2 to n, and whenever an element aj smaller than
x is found, add one to sp and swap aj and asp.

ä In the end swap a1 and asp.

Pseudocode for split

sp = 1;
x = a[sp];
for j = sp+1 to n do:

if (a[j] < x) swap a[++sp] and a[j];
endfor
swap a[1] and a[sp]

13-18 – Sorting0

13-18

Example

• Let A = [10 12 9 15 5 17 8] and pivot = 1.

--
>10< 12* 9 15 5 17 8 --> j=2: sp =1 no sw
>10< 12 9* 15 5 17 8 --> j=3: sp+=1 & swap ->
10 >9< 12 15* 5 17 8 --> j=4: no change
10 >9< 12 15 5* 17 8 --> j=5: sp+=1 & swap ->
10 9 >5< 15 12 17* 8 --> j=6: no change
10 9 >5< 15 12 17 8*--> j=7: sp+=1 & swap ->
10 9 5 >8< 12 17 15 --> Swap a(1) and a(sp):

--
8 9 5 >10< 12 17 15 --> DONE.

--

ä Quick-sort processes the lists [8 9 5] and [12 17 15] recursively.

13-19 – Sorting0

13-19

Parallelizing Quick-Sort

ä Trivial implementation : Use a tree structure –

Important: Assumes Data is initially on one processor.

Steps:

1. In PE0: Find a splitting key.

2. In PE0: Split array in two parts

3. In PE0: Send one half of the data on to PE1.

4. Repeat above *recursively* for sublists in PE0 and PE1

13-20 – Sorting0

13-20

3 8 6 2 4 7

3 2 5

3 6 79

4 97

9

7986

2 5

3 8

5

4

4

2

8

P

P

0

P0

P2 P 3

P0 1P

0 1 P

P3 P5P4

ä Major limitation: initial step takes O(n) - it is done on one
processor. Total is O(n) - speed-up is at most logn.

ä This is because data is assumed to be initially in one PE

13-21 – Sorting0

13-21

ä Practical versions in which list is initially split into p Processors:
use the hypercube model [See pages 8-1 to 8-3 of lecture notes # 8
for an illustration]

ä Recursively sort halves. Message passing version involves explicit
exchange of data.

ä Shared memory versions are easy: (1) do a local split (2) rearrange
whole array (3) subdivide the 2 halves into p/2 parts and (4) decide
which processors will work on each of the subparts.

13-22 – Sorting0

13-22

