ALGORITHM : 1. OEmerge

Odd-even Mergesort

» The main idea revolves around the Odd-Even Merge operation
which merges two sorted sequences A, and B.

0. Input: A, B two sorted arrays of length n
Output: Sorted array M of union of A and B
1. Obtain C = OEmerge{E(A),O(B)} = [coy .. Cr—1]
Vot 2. Obtain D = OEmerge{O(A), E(B)} = [do, ..., dp—_1]
otation: — [en A~ - - d .
Let A = [@gy.eese-.san_1] and B = [bgy.cecy...,by_1] two 3 M= leo,do,crydyy - Cnmty]
sorted arrays. Define

E(A) = [CL(), A24g ¢ ooy an_z];

» Steps 1 and 2 are recursive and they are also parallel.

Consider the two sorted sequences

A=[2,4,6,7 B=]1,3,5,8]

O(A) = [0;1, A3g e 0o an_l]

and similarly for B. We will also use the notation a, b to denote the
sorted version of a, b.

Issue: how to sort the union of A and B into one sorted array M. E(A) = [2,6], O(A)=[4,7]
» Here is the algorithm to produce M: Then: E(B) =[1,5], O(B)=[3,8]
14-1 — Sorting 14-2 — Sorting

14-1

o

» Step 1 merges (recursively) [2, 6] with [3,8]
C =[2,3,6, 8]

Cost analysis: Unfolding the recursive calls

» See how the recursive calls unfold (previous example)

Result:

» Step 2 merges (recursively) [4,7] with [1,5]

2 4 6 7 1 3 5 8
Result: D =[1,4,5,7] E(A) O(B) O(A) E(B)
2 6 338 @7 I35

» Step 3 interleaves the two arrays
2,1,3,4,6,5,8,7]
» Finally, rearrange unordered pairs (c;, d;):

M =[1,2,3,4,5,6,7, 8]

Result:

Result:

14-3 — Sorting

14-3

[6]
dSort § | Sort
2 8 [3_ 6
d Interleave-sort |
2 3 6 8]

4 Sort | | Sort |
4 5 [7
J Interleave-sort |
M4 5 7]

l Interleave-sort |

11 2 3 4

5 6 7 8]

14-4

— Sorting

14-4

Odd-FEven Mergesort: The algorithm

®: How can we use this to sort a sequence of numbers?

A: Build sorted sublists bottom up - starting with lists of size 2,
and merging sublists into bigger ones

Odd-Even Mergesort:

e Sort arrays [ag, a1, [az, as] etc.. [ap—2,apn_1]

e Merge [ag, a1], [a2, as] into [ag, a1, az, as], [as, as], [as, az]
into [aq4, as, ag, az], etc...

e Continue merging larger and larger subsets until the whole array
is sorted..

A complete example from start

Bottom level:
7 6 2 4 5 3 8 1 -->sort all pairs:

--A- -B-— -A-- --B- --> Merge by OE Merge

EA OB OA EB EA OB OA EB
6 4 7 2 3 8 5 1 -->Sort each set (merge

pairs of singletons)

AB A B A B A B

4 6 2 7 3 8 1 5 —--> Interleave:

--— A--— -—-B -——- -—> OE Merge sort ...
14-5 - Sorting 14-6 - Sorting
=== A—- == B ---- --> recursion Complexity
2 4 6 7 1 3 5 8 O0OEmerge(A,B)
——EA- -OB-- --0A-- --FB- How many steps are there?
g___? ?__5_3 A_L___Z 1__? nggizéon What is the number of sequential operations?

EA OB OA EB EA OB OA EB
2 8 6 3 4 5 7 1

_______________ —-——— Sort

2 8 3 6 4 b 1 7

--C-- --D-- --C-- --D- Interleave->
2 3 6 8 1 4 5 7

_____ C———— -—-D-—————- Interleave->

1 2 3 4 5 6 7 8 <-- final array

14-7 — Sorting

The Odd-even mergesort algorithm consists of sorting larger and
larger arrays - using the merge operation. Start with arrays of length
2. Then merge pairs of arrays of length 2 into sorted arrays of length
4. etc. The total number of operations is O(log3(n)).

14-8 — Sorting

14-8

A slightly simpler implementation

» Use a different version of OEmerge
» Formulated *in-place*
1. OEmerge even part of A: ag, a2y ,apn_1

2. OEmerge odd part of A: ai,a3,-++ ,a,

3. Sort pairs: A = {ag, a1, a2,03,04°** Ap—2, Ap—_1,Cn}

» See matlab implementation (sequential)

a0 a2 a4 a6 sort —--> a0 a2 a4 a6
/ / / <--compare exchange
al a3 ab a7 sort --> al a3 ab a7

14-9 — Sorting

14-9

Proof of correctness : use induction

a0 | at 010 0|0 00
a2 |a3 00 00 o]0
a4 | a5 01 00 0,0
a6 |a7 | |11 0|1 Oj/1
a8 | a9 0/0 0|1 0|1
a10 | at1 011 11 11
a12 | a13 114 111 LB
al4 | at5 11 11 111
E : SortA A Compare-
Tttt Exchange
T sort
14-10 — Sorting

14-10

Bitonic Mergesort. Definition of bitonic sequences

A bitonic sequence has two sub-sequences, one increasing and one
decreasing. For example,

a@pw<a < <a;i-1<0;>0ai41 > > A2 > Ap—1

for some (0 < 2 < m). » A sequence is also bitonic if shifting
the sequence cyclically (left or right) gives a sequence with above
property.

Sequences: [468931]and[89 314 6] are bitonic

Find an easy way to recognize a bitonic sequence..

14-11 — Sorting

14-11

Property of Bitonic Sequences: | Performing a compare-exchange

operation on a; with @,/ for all 7, yields *two* bitonic sub-
sequences.

<--—-Initial Bitonic sequence-———--—- >
3 5 8 9 7 "4 2 1
Compare- “——————————————————— ~
exchanges S ~
3 4 2 1 7 5 8 9
Bitonic sequence | Bitonic sequence

What do you observe regarding these sub-sequences? [Hint:
compare largest entry of one with smallest of other]

14-12 — Sorting

14-12

Bitonic Mergesort- Algorithm

» The algorithm will exploit one nice property which makes it easy
to sort bitonic sequences.

Property: ~ After compare-exchange operations with
stride /2, keys of the resulting left bitonic subsequence
are all smaller than those of the right bitonic subsequence.

» See previous example

Sorting a bitonic sequence:

» Given a bitonic sequence, recursively perform compare-exchange
operations on smaller and smaller sets [strides n/2, n/4, ..]

14-13 — Sorting

14-13

Sorting a bitonic sequence — Process produces smaller
and smaller bitonic sequences such that entries of left ones of a pair
are smaller than entries in right one.

2 4 7 8 | 6 3 1 0
Comp-exch T -
stride= 4 T T etc..
2 3 |1 o | 6 4 | 7 8
Comp-exch T -
stride = 2 T ~ etc..
110121316 |41]7]8
Comp-exch T
stride = 1 T-—-" etc..

Sorted list O 1 2 3 4 6 7 8

14-14 — Sorting

14-14

Bitonic sorting | Uses a bottom up approach.

1. Build adjacent pairs of numbers that 1 and |
ai, as: T, as, ay J,, etc.

3. Use previous idea of sorting to sort each pair of pairs into increasing
numbers and them decreasing numbers, so now aq, az, as, a4 is T,
and as, ag, ar, asg is |, etc.

4. Repeat this process. Bitonic sequences of larger and larger lengths
are obtained.

5. In the final step, a single bitonic sequence is sorted into a single
increasing sequence.

» Total cost is similar to OE-Mergesort: O(log?(n)) using n/2
processors.

14-15 — Sorting

14-15

A complete example

Phase 1
---unsorted sequence--- --> sort all pairs
7 6 2 4 5 3 8 1 -—> into Up and Down
6 7 4 2 3 5 8 1 <-- Result
—=> <——= —==> <——-
Phase 2
6 7 4 2 | 3 5 8 1 --> Comp/exch on each part
-==> <--- | ---> <--- stride=2. Up for 1st half
Down for 2nd half
4 2 6 7 | 8 5 3 1 --> Repeat with stride=1:
4 6 7 | 8 5 3 1 <-- Result
__________ > <_________

14-16 — Sorting

14-16

Phase 3 Sorting networks

2 4 6 7 | 8 5 3 1 <-- Compare exchange
_________ > D Stride=z & Odd-even merge-sort and bitonic mergesort belong to a class of
sorting algorithms based on “sorting networks".
2 413 1 | 8 5 | 6 7 <-- Compare exchange
Stride=2 » Multistage Networks designed specifically for the task of sorting.

N

theslatelsisly é;;iggriql)are exchange SequenceA = [8,3,7,2]. Arrows indicate direc-

tion of comparator Min (down) or Max (up)]
1 2 3 4 5 6 7 8 <-- Final Result

14-17 — Sorting 14-18 — Sorting

14-17 14-18

Odd-even Mergesort

[ee]

29
5)
D9 QS

" o

7 D O 7
7J 7
2 O 8
3 3
8 2
2
— 3 3
bitonic Mergesort
7 7

14-19 — Sorting

14-19

