
Odd-even Mergesort

ä The main idea revolves around the Odd-Even Merge operation
which merges two sorted sequences A, and B.

Notation:
Let A = [a0, ..., . . . , an−1] and B = [b0, ..., . . . , bn−1] two
sorted arrays. Define

E(A) = [a0, a2, . . . , an−2]; O(A) = [a1, a3, . . . , an−1]

and similarly for B. We will also use the notation a, b to denote the
sorted version of a, b.

Issue: how to sort the union of A and B into one sorted array M .

ä Here is the algorithm to produce M :

14-1 – Sorting

14-1

ALGORITHM : 1 OEmerge

0. Input: A, B two sorted arrays of length n
Output: Sorted array M of union of A and B

1. Obtain C = OEmerge{E(A), O(B)} ≡ [c0, ..., cn−1]
2. Obtain D = OEmerge{O(A), E(B)} ≡ [d0, ..., dn−1]
3. M = [c0, d0, c1, d1, . . . , cn−1, dn−1]

ä Steps 1 and 2 are recursive and they are also parallel.

Example: Consider the two sorted sequences

A = [2, 4, 6, 7] B = [1, 3, 5, 8]

Then:
E(A) = [2, 6], O(A) = [4, 7]
E(B) = [1, 5], O(B) = [3, 8]

14-2 – Sorting

14-2

ä Step 1 merges (recursively) [2, 6] with [3,8]

Result: C = [2, 3, 6, 8]

ä Step 2 merges (recursively) [4,7] with [1,5]

Result: D = [1, 4, 5, 7]

ä Step 3 interleaves the two arrays

Result: [2, 1, 3, 4, 6, 5, 8, 7]

ä Finally, rearrange unordered pairs (ci, di):

Result: M = [1, 2, 3, 4, 5, 6, 7, 8]

14-3 – Sorting

14-3

Cost analysis: Unfolding the recursive calls

ä See how the recursive calls unfold (previous example)

2 4 6 7 1 3 5 8
E(A) O(B) O(A) E(B)
2 6 3 8 4 7 1 5
2 8 6 3 4 5 7 1
↓ Sort ↓ ↓ Sort ↓ ↓ Sort ↓ ↓ Sort ↓
2 8 3 6 4 5 1 7
↓ Interleave-sort ↓ ↓ Interleave-sort ↓
2 3 6 8 1 4 5 7

↓ Interleave-sort ↓
1 2 3 4 5 6 7 8

14-4 – Sorting

14-4

Odd-Even Mergesort: The algorithm

Q: How can we use this to sort a sequence of numbers?

A: Build sorted sublists bottom up - starting with lists of size 2,
and merging sublists into bigger ones

Odd-Even Mergesort:

• Sort arrays [a0, a1], [a2, a3] etc.. [an−2, an−1]

• Merge [a0, a1], [a2, a3] into [a0, a1, a2, a3], [a4, a5], [a6, a7]
into [a4, a5, a6, a7], etc...

• Continue merging larger and larger subsets until the whole array
is sorted..

14-5 – Sorting

14-5

A complete example from start

Bottom level:

7 6 2 4 5 3 8 1 --> sort all pairs:
---- ---- ---- ----

6 7 2 4 3 5 1 8
--A- -B-- -A-- --B- --> Merge by OE Merge

EA OB OA EB EA OB OA EB
6 4 7 2 3 8 5 1 --> Sort each set (merge
---- ---- ---- ---- pairs of singletons)
A B A B A B A B

--C-- --D-- -C-- -D--
4 6 2 7 3 8 1 5 --> Interleave:
---- ---- ---- ----

2 4 6 7 1 3 5 8
---- A---- ---- B --- --> OE Merge sort ...

14-6 – Sorting

14-6

---- A---- ----- B ---- --> recursion
2 4 6 7 1 3 5 8 OEmerge(A,B)

--EA- -OB-- --OA-- --EB-
2 6 3 8 4 7 1 5 recursion
----- ---- ----- ---- OEmerge

EA OB OA EB EA OB OA EB
2 8 6 3 4 5 7 1
----- ----- ----- ---- Sort
2 8 3 6 4 5 1 7
--C-- --D-- --C-- --D- Interleave->

2 3 6 8 1 4 5 7
-----C------- ---D------- Interleave->

1 2 3 4 5 6 7 8 <-- final array

14-7 – Sorting

14-7

Complexity

-1 How many steps are there?

-2 What is the number of sequential operations?

The Odd-even mergesort algorithm consists of sorting larger and
larger arrays - using the merge operation. Start with arrays of length
2. Then merge pairs of arrays of length 2 into sorted arrays of length
4. etc. The total number of operations is O(log2

2(n)).

14-8 – Sorting

14-8

A slightly simpler implementation

ä Use a different version of OEmerge

ä Formulated *in-place*

1. OEmerge even part of A: a0, a2, · · · , an−1

2. OEmerge odd part of A: a1, a3, · · · , an

3. Sort pairs: A = {a0, a1, a2, a3, a4 · · · an−2, an−1, an}
ä See matlab implementation (sequential)

a0 a2 a4 a6 sort --> a0 a2 a4 a6
/ / / <--compare exchange

a1 a3 a5 a7 sort --> a1 a3 a5 a7

14-9 – Sorting

14-9

Proof of correctness : use induction

Sort

Sort

a0

a2

a4

a6

a8

a10

a12

a14

a1

a3

a5

a7

a9

a11

a13

a15

0 0

1

0 0

0 1

0
1

1

1

11

1

0 0
0 0

0

1
1

1

1

0

0

1

1

1
0

1

0 0
0 0

0

1
1

1

1

0

0

1

1

1
0

1

00

Compare−

Exchange

14-10 – Sorting

14-10

Bitonic Mergesort. Definition of bitonic sequences

A bitonic sequence has two sub-sequences, one increasing and one
decreasing. For example,

a0 < a1 < · · · < ai−1 < ai > ai+1 > · · · > an−2 > an−1

for some i(0 < i < n). ä A sequence is also bitonic if shifting
the sequence cyclically (left or right) gives a sequence with above
property.

Example: Sequences: [4 6 8 9 3 1] and [8 9 3 1 4 6] are bitonic

-3 Find an easy way to recognize a bitonic sequence..

14-11 – Sorting

14-11

Property of Bitonic Sequences: Performing a compare-exchange

operation on ai with ai+n/2 for all i , yields *two* bitonic sub-
sequences.

Example:

<----Initial Bitonic sequence------->
3 5 8 9 7 4 2 1

Compare- ^-------------------^
exchanges ^-------------------^

^-------------------^
^-------------------^

3 4 2 1 7 5 8 9
Bitonic sequence | Bitonic sequence

-4 What do you observe regarding these sub-sequences? [Hint:
compare largest entry of one with smallest of other]

14-12 – Sorting

14-12

Bitonic Mergesort- Algorithm

ä The algorithm will exploit one nice property which makes it easy
to sort bitonic sequences.

Property: After compare-exchange operations with
stride n/2, keys of the resulting left bitonic subsequence
are all smaller than those of the right bitonic subsequence.

ä See previous example

Sorting a bitonic sequence:

ä Given a bitonic sequence, recursively perform compare-exchange
operations on smaller and smaller sets [strides n/2, n/4, ...]

14-13 – Sorting

14-13

Example: Sorting a bitonic sequence – Process produces smaller
and smaller bitonic sequences such that entries of left ones of a pair
are smaller than entries in right one.

2 4 7 8 | 6 3 1 0
Comp-exch ^-----------------^
stride= 4 ^-----------------^ etc..

2 3 | 1 0 | 6 4 | 7 8
Comp-exch ^--------^
stride = 2 ^--------^ etc..

1 | 0 | 2 | 3 | 6 | 4 | 7 | 8
Comp-exch ^---^
stride = 1 ^---^ etc..

Sorted list 0 1 2 3 4 6 7 8

14-14 – Sorting

14-14

Bitonic sorting Uses a bottom up approach.

1. Build adjacent pairs of numbers that ↑ and ↓
a1, a2: ↑, a3, a4 ↓, etc.

3. Use previous idea of sorting to sort each pair of pairs into increasing
numbers and them decreasing numbers, so now a1, a2, a3, a4 is ↑,
and a5, a6, a7, a8 is ↓, etc.

4. Repeat this process. Bitonic sequences of larger and larger lengths
are obtained.

5. In the final step, a single bitonic sequence is sorted into a single
increasing sequence.

ä Total cost is similar to OE-Mergesort: O(log2(n)) using n/2
processors.

14-15 – Sorting

14-15

A complete example

Phase 1

---unsorted sequence--- --> sort all pairs
7 6 2 4 5 3 8 1 --> into Up and Down
---- ---- ---- ----
6 7 4 2 3 5 8 1 <-- Result
---> <--- ---> <---

Phase 2

6 7 4 2 | 3 5 8 1 --> Comp/exch on each part
---> <--- | ---> <--- stride=2. Up for 1st half

Down for 2nd half

4 2 6 7 | 8 5 3 1 --> Repeat with stride=1:

2 4 6 7 | 8 5 3 1 <-- Result
----------> <---------

14-16 – Sorting

14-16

Phase 3

2 4 6 7 | 8 5 3 1 <-- Compare exchange
---------> <----------- Stride=4

2 4 | 3 1 | 8 5 | 6 7 <-- Compare exchange
Stride=2

2 | 1 | 3 | 4 | 6 | 5 | 8 | 7 <-- Compare exchange
Stride=1

1 2 3 4 5 6 7 8 <-- Final Result

14-17 – Sorting

14-17

Sorting networks

Odd-even merge-sort and bitonic mergesort belong to a class of
sorting algorithms based on “sorting networks”.

ä Multistage Networks designed specifically for the task of sorting.

Example: Sequence A = [8, 3, 7, 2]. Arrows indicate direc-
tion of comparator Min (down) or Max (up)]

14-18 – Sorting

14-18

Odd-even Mergesort
3

2

7

8

3

2

3

2

7

8

2

7

3

8

7

8

bitonic Mergesort
3

7

2

8

8

7

2

3

2

7

8

3

7

2

8

3

14-19 – Sorting

14-19

