Back (briefly) to MPI: more on communicators / topology

e Quick overview of communicators in MPI
e Groups

e Virtual topologies

e Cartesian Mappings

e Example: back to the 2-D matrix product

15-1

MPI communication groups

» MPI supports grouping of processes

» Can be used to organize application around tasks

» (ollective communications operations can be performed within a
group.

» (Can create virtual communication topologies: Each group has its
own communicator

» Groups and communicators are MP| objects

15-2 — MpiComm

15-2

Mawn MPI Group functions

» MPI _Group_size: returns number of processes in group

» MPI Group_rank: returns rank of calling process in group
» MPI Group_compare: compares group members and group order

» MPI_Group_translate ranks: translates ranks of processes in one
group to those in another group

» MPI_Comm_ group: returns the group associated with a com-
municator

» MPI Group_union: creates a group by combining two groups

» MPI Group_intersection: creates a group from the intersection
of two groups

15-3 — MpiComm

15-3

» MPI _Group_difference: creates a group from the difference be-
tween two groups

» MPI _Group_incl: creates a group from listed members of an
existing group

» MPI_Group_excl: creates a group excluding listed members of an
existing group

» MPI_Group_range incl: creates a group according to first rank,
stride, last rank

» MPI Group_range excl: creates a group by deleting according to
first rank, stride, last rank

» MPI_Group_free: marks a group for deallocation

15-4

Creating a group: Example from P. Patcheco’s book

» Declarations etc.

main (int argc, char*x argv[]) A

int

int

int
MPI_Group
MPI_Group
MPI_Comm
int *

int

int

int

int

p;

q; /* = sqrt(p) */

my_rank;
group_world;
row_group;
row_comm,
process_ranks,;
proc;

test = 0;

sum;
my_rank_1in_row,;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD,
MPI_Comm_rank (MPI_COMM_WORLD,

&p) ;
&my_rank) ;

15-5

— MpiComm

15-5

» Setting up communicator

é.; (int) sqrt((double) p);

/*——— List of processes in new communicator */
process_ranks = (int*) malloc(g*sizeof (int)) ;
for (proc = 0; proc < q; proc++)

process_ranks [proc] = proc;

/*-—-- Get group underlying MPI_COMM_WORLD x*/
MPI_Comm_group (MPI_COMM_WORLD, &group_world) ;

/*--—- Create the new group */

MPI_Group_incl (group_world, q, process_ranks,
grow_group) ;
/*——-- Create the new communicator */
MPI_Comm_create (MPI_COMM_WORLD ,row_group,
&row_comm) ;

15-6 — MpiComm

15-6

» Testing

/*——- Test collective ops in row_comm */
if (my_rank < q) {
MPI_Comm_rank (row_comm, &my_rank_in_row) ;
if (my_rank_in_row == 0) test = 1;
MPI_Bcast (&test, 1, MPI_INT, O, row_comm) ;
+
MPI_Reduce (&test, &sum, 1, MPI_INT, MPI_SUM, O,
MPI_COMM_WORLD) ;
if (my_rank == 0) {
printf ("q %d, sum = %d\n", g, sum),;
+

MPI _Finalize () ;

15-7 — MpiComm

15-7

Explore: MPI Comm_split

#include <mpi.h>
int MPI_Comm_split (MPI_Comm comm, int color,
int key, MPI_Comm *newcomm)

» This function allows to partition a group associated with comm
into disjoint subgroups, one for each value of color.

» Each subgroup contains processes of the same color.

» A new communicator is created for each subgroup and returned
In newcomm.

» We will see something similar when considering cartesian grids

#11| Explore this [MPI site is enough]

#15| See how you can use it to redo previous example (2 colors)

15-8 — MpiComm

15-8

MPI Vairtual topologies

» Relevant to Lab3.

» MPI allows to create ‘virtual’ topologies [e.g. a 3-D grid of
processors|

» These topologies are virtual: no relation between architectire of
the parallel machine and the process topology.

» A virtual topology is built from MPI communicators and groups
» Two types of topologies: Cartesian (1-D, 2-D, 3-D), Graph
» Uses: applications with specific communication patterns [Lab 3]

» Also: MPI may reduce communication costs by optimizing process
mapping

15-9 — MpiComm

15-9

MPI Cartesian topologies

» A few of the commands used for working with MP| Cartesian
topologies:

e MPI_Dims create: Create N-Dimensional arrangement of PEs in
cartesian grid.

e MPI _Cart create: Create N-Dimensional virtual topology/cartesian
grid.

e MPI _Cart_coords: Get local PE coordinates in new cartesian grid

e MPI _Cart_sub: Partitions a communicator into subgroups which
form lower-dimensional cartesian subgrids.

e MPI _Cart_shift: Used to find processor neighbors. Returns the
shifted source and destination ranks, given a shift direction and amount.

15-10 — MpiComm

15-10

Illustration (examles from Lab3)

#include <mpi.h>
int MPI_Cart_cre
const 1int di
int reorder,

ate (MPI_Comm comm_old, int ndims,
ms [], const int periods|[],
MPI_Comm *comm_cart)

“Makes a new communicator to which Cartesian topology information

has been attached.”

Parameter i/o
commold: in
ndims: In
dims: In
periods: in
reorder: In

comm_cart: out

Definition

input communicator (handle)

number of dimensions of cartesian grid

integer array of size ndims specifying the

number of processes in each dim.

logical array of size ndims specifying for each dimen:
ranking may be reordered (true) or not

(false) (logical)

communicator with new cartesian topology (handle)

15-11

— MpiComm

15-11

» One note: reorder tells whether or not to allow reordering of
processes so to achieve a good embedding with respect to physical
architecture.

» PEs are ordered from (0:np-1); numbered/ranked in row-major

(C lang) order.

Create a (4,3) grid from a 12 process group:

PO P1 P2 (0,0){ [(0,1)] |(0,2)
P3| |- - - (1,0)] [(L,1)] |(1,2)
(2,0)] (21| [(2,2)

Po| (P10 [P11 (3.0) [(3,1)] [(3,2)

15-12 — MpiComm

15-12

» |n Lab3:

» MPIl_ Comm comm2D declares a communicator named comm?2D.

» We then create a cartesian communicator with a gz X g7 grid
(2-D) topology:

[H—mmmmm CREATE 2-D communicator*/

dims [0] = qi;

dims [1] = qj;

periods [0]=periods [1]=1;

[k —mmm e 2D topoology createdx/

MPI_Cart_create (MPI_COMM_WORLD ,2,dims,periods ,0,&
comm?2D) ;

[l mmmmmmmmm——mmm———— - my rank in 2-D form x*/
MPI_Cart_coords (comm2D ,myid ,2, coords) ;

15-13

e rank of West neighbor x/

coords [0]=qi;
coords [1]=qj-1;
MPI_Cart_rank (comm2D, coords ,&westNB) ;

» Finds the rank of neighbor tp the west. westNB can now be used
to commicate with node (g%, q7 — 1) in grid.

» This is very convenient as it simplifies communication.

15-14 — MpiComm

15-14

An tmportant function MPI Cart sub

#include <mpi.h>

int MPI_Cart_sub(MPI_Comm comm,
const int remain_dims[],
MPI_Comm *comm_new)

» Partitions a communicator into subgroups which form lower-
dimensional cartesian subgrids

» remain_dims: This is a logical vector the ith entry of which
specifies whether the ith dimension is kept in the subgrid (true) or is
dropped (false)

» comm new: (out) communicator containing the subgrid that
includes the calling process (handle)

» Recall MPI_.Comm_split - this is similar.

#13] Show how you can use to implement the 2-D matrix multiply
[page 12-17 of Lecture notes set 12]

15-15

