
Back (briefly) to MPI: more on communicators / topology

• Quick overview of communicators in MPI

• Groups

• Virtual topologies

• Cartesian Mappings

• Example: back to the 2-D matrix product

15-1

MPI communication groups

ä MPI supports grouping of processes

ä Can be used to organize application around tasks

ä Collective communications operations can be performed within a
group.

ä Can create virtual communication topologies: Each group has its
own communicator

ä Groups and communicators are MPI objects

15-2 – MpiComm

15-2

Main MPI Group functions

ä MPI Group size: returns number of processes in group

ä MPI Group rank: returns rank of calling process in group

ä MPI Group compare: compares group members and group order

ä MPI Group translate ranks: translates ranks of processes in one
group to those in another group

ä MPI Comm group: returns the group associated with a com-
municator

ä MPI Group union: creates a group by combining two groups

ä MPI Group intersection: creates a group from the intersection
of two groups

15-3 – MpiComm

15-3

ä MPI Group difference: creates a group from the difference be-
tween two groups

ä MPI Group incl: creates a group from listed members of an
existing group

ä MPI Group excl: creates a group excluding listed members of an
existing group

ä MPI Group range incl: creates a group according to first rank,
stride, last rank

ä MPI Group range excl: creates a group by deleting according to
first rank, stride, last rank

ä MPI Group free: marks a group for deallocation

15-4 – MpiComm

15-4

Creating a group: Example from P. Patcheco’s book

ä Declarations etc.

main(int argc , char* argv []) {
int p;
int q; /* = sqrt(p) */
int my_rank;
MPI_Group group_world;
MPI_Group row_group;
MPI_Comm row_comm;
int* process_ranks;
int proc;
int test = 0;
int sum;
int my_rank_in_row;

MPI_Init (&argc , &argv);
MPI_Comm_size(MPI_COMM_WORLD , &p);
MPI_Comm_rank(MPI_COMM_WORLD , &my_rank);

15-5 – MpiComm

15-5

ä Setting up communicator
...
q = (int) sqrt((double) p);

/* --- List of processes in new communicator */
process_ranks = (int*) malloc(q*sizeof(int));
for (proc = 0; proc < q; proc ++)

process_ranks[proc] = proc;
/* --- Get group underlying MPI_COMM_WORLD */

MPI_Comm_group(MPI_COMM_WORLD , &group_world);
/* --- Create the new group */

MPI_Group_incl(group_world , q, process_ranks ,
&row_group);

/* --- Create the new communicator */
MPI_Comm_create(MPI_COMM_WORLD ,row_group ,

&row_comm);

15-6 – MpiComm

15-6

ä Testing
/* --- Test collective ops in row_comm */

if (my_rank < q) {
MPI_Comm_rank(row_comm , &my_rank_in_row);
if (my_rank_in_row == 0) test = 1;
MPI_Bcast (&test , 1, MPI_INT , 0, row_comm);

}
MPI_Reduce (&test , &sum , 1, MPI_INT , MPI_SUM , 0,

MPI_COMM_WORLD);
if (my_rank == 0) {

printf("q = %d, sum = %d\n", q, sum);
}
MPI_Finalize ();

}

15-7 – MpiComm

15-7

Explore: MPI Comm split

#include <mpi.h>
int MPI_Comm_split(MPI_Comm comm , int color ,

int key , MPI_Comm *newcomm)

ä This function allows to partition a group associated with comm
into disjoint subgroups, one for each value of color.

ä Each subgroup contains processes of the same color.

ä A new communicator is created for each subgroup and returned
in newcomm.

ä We will see something similar when considering cartesian grids

-1 Explore this [MPI site is enough]

-2 See how you can use it to redo previous example (2 colors)

15-8 – MpiComm

15-8

MPI Virtual topologies

ä Relevant to Lab3.

ä MPI allows to create ‘virtual’ topologies [e.g. a 3-D grid of
processors]

ä These topologies are virtual: no relation between architectire of
the parallel machine and the process topology.

ä A virtual topology is built from MPI communicators and groups

ä Two types of topologies: Cartesian (1-D, 2-D, 3-D), Graph

ä Uses: applications with specific communication patterns [Lab 3]

ä Also: MPI may reduce communication costs by optimizing process
mapping

15-9 – MpiComm

15-9

MPI Cartesian topologies

ä A few of the commands used for working with MPI Cartesian
topologies:

• MPI Dims create: Create N-Dimensional arrangement of PEs in
cartesian grid.

• MPI Cart create: Create N-Dimensional virtual topology/cartesian
grid.

• MPI Cart coords: Get local PE coordinates in new cartesian grid

• MPI Cart sub: Partitions a communicator into subgroups which
form lower-dimensional cartesian subgrids.

• MPI Cart shift: Used to find processor neighbors. Returns the
shifted source and destination ranks, given a shift direction and amount.

15-10 – MpiComm

15-10

Illustration (examles from Lab3)

#include <mpi.h>
int MPI_Cart_create(MPI_Comm comm_old , int ndims ,

const int dims[], const int periods[],
int reorder , MPI_Comm *comm_cart)

“Makes a new communicator to which Cartesian topology information
has been attached.”

Parameter i/o Definition
comm old: in input communicator (handle)
ndims: in number of dimensions of cartesian grid
dims: in integer array of size ndims specifying the

number of processes in each dim.
periods: in logical array of size ndims specifying for each dimension whether or not the grid is periodic
reorder: in ranking may be reordered (true) or not

(false) (logical)
comm cart: out communicator with new cartesian topology (handle)

15-11 – MpiComm

15-11

ä One note: reorder tells whether or not to allow reordering of
processes so to achieve a good embedding with respect to physical
architecture.

ä PEs are ordered from (0:np-1); numbered/ranked in row-major
(C lang) order.

Create a (4,3) grid from a 12 process group:

15-12 – MpiComm

15-12

ä In Lab3:

ä MPI Comm comm2D declares a communicator named comm2D.

ä We then create a cartesian communicator with a qi × qj grid
(2-D) topology:
/* -------------------- CREATE 2-D communicator */
dims [0] = qi;
dims [1] = qj;
periods [0]= periods [1]=1;
/* --------------------2D topoology created */
MPI_Cart_create(MPI_COMM_WORLD ,2,dims ,periods ,0,&
comm2D);

/* -------------------- my rank in 2-D form */
MPI_Cart_coords(comm2D ,myid ,2,coords);

15-13 – MpiComm

15-13

/* -------------------- rank of West neighbor */
coords [0]=qi;
coords [1]=qj -1;
MPI_Cart_rank(comm2D ,coords ,& westNB);

ä Finds the rank of neighbor tp the west. westNB can now be used
to commicate with node (qi, qj − 1) in grid.

ä This is very convenient as it simplifies communication.

15-14 – MpiComm

15-14

An important function MPI Cart sub

#include <mpi.h>
int MPI_Cart_sub(MPI_Comm comm ,

const int remain_dims [],
MPI_Comm *comm_new)

ä Partitions a communicator into subgroups which form lower-
dimensional cartesian subgrids

ä remain dims: This is a logical vector the ith entry of which
specifies whether the ith dimension is kept in the subgrid (true) or is
dropped (false)

ä comm new: (out) communicator containing the subgrid that
includes the calling process (handle)

ä Recall MPI Comm split - this is similar.

-3 Show how you can use to implement the 2-D matrix multiply
[page 12-17 of Lecture notes set 12]
15-15 – MpiComm

15-15

