GRAPH ALGORITHMS

- Introduction to graphs representations
- Single source shortest path: Dijkstra's algorithm
- Minimum cost spanning tree: Prim's algorithm
- All source shortest paths

Graphs – definitions & representations

<u>Definition</u>: A graph G = (V, E) consists of a set V of vertices and a set E of edges. The elements of E are pairs (u, v) with $u, v \in V$. If the pairs are ordered then the graph is directed, otherwise it is undirected.

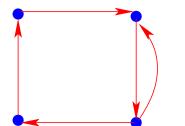
Terminology:

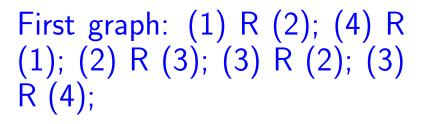
- Digraph = Directed graph.
- When $(u, v) \in E$, we say that u and v are adjacent and that the edge (u, v) is incident to u and v.

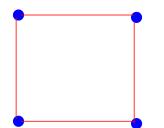
A graph G = (V, E) is a representation of a certain binary relation. If R is a binary relation between elements in V then, we can represent it by a graph G = (V, E) as follows:

 $(u,v)\in E \leftrightarrow u \; R \; v$

• Undirected graph \leftrightarrow symmetric relation.







Second graph: (1) R (2); (2) R (3); (3) R (4); (4) R (1).

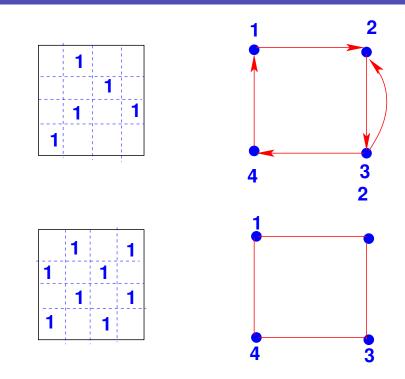
Graphs

Graphs – Adjacency matrix representation

Assume that there are n vertices. Then the adjacency matrix is an $n \times n$ matrix, with

$$a_{i,j} = \left\{egin{array}{c} 1 ext{ if } (i,j) \in E \ 0 ext{ Otherwise} \end{array}
ight.$$

16-4



Matrix is symmetric when graph is undirected

- OK scheme but wasteful for sparse graphs
- More on sparse matrices later.

Graphs – shortest part algorithm

<u>Definition</u>: A weighted graph G = (V, E, W) is a graph in which each edge is weighted, i.e., each edge has an associated weight. The length of a path is the sum of the weights of all the edges in the path.

The weights are usually positive numbers. [but can also be nonpositive in some applications]

<u>Problem</u>: Given a node s, find the shortest paths from s to all other nodes in the weighted graph G.

Called One-source shortest path problem

Another problem: Find shortest path from any vertex to any other vertex

Graphs

Graphs – Dijkstra's algorithm

- Idea of shortest path algorithm very similar to breadth-first-search.
- Good implementation for sparse graphs: Priority Queue

Differences with BFS:

- Need distances from starting node. Update these distances as we do the traversal;
- Always take the next node to be removed from queue to be the one with smallest distance.
- We will consider simple implementations for dense graphs

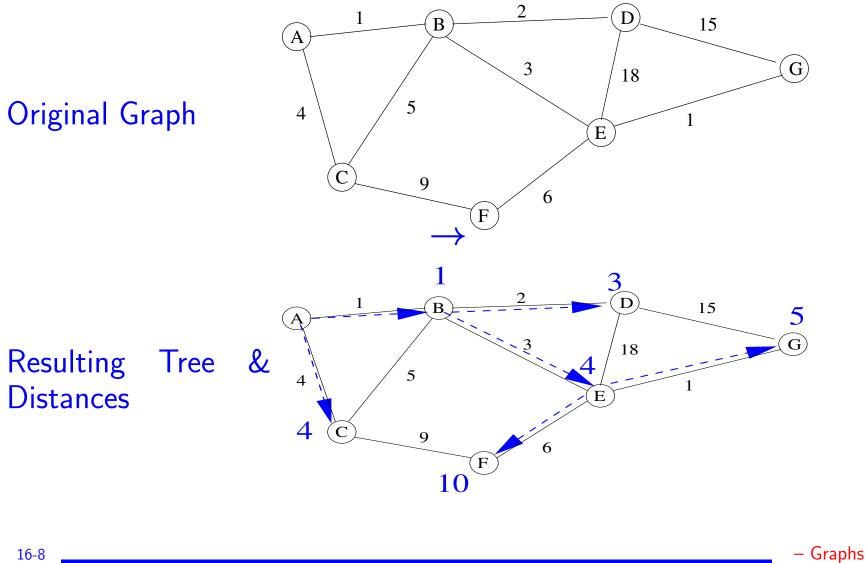
ALGORITHM : 1. Shortest_Path(G,r)

Initialize:
1. For each
$$v \in V$$
 set:
2. $d[v] = 0$ if $v == r$ and $d[v] = \infty$ otherwise.
3. Set $V_T = \emptyset$.
Iterate:
4. While $V_T \neq V$ do
5. Find u s.t. $d[u] = \min[d[v], v \in V - V_T]$
6. $V_T = V_T \cup \{u\}$
7. For each $v \in V - V_T$ set:
8. $d[v] = \min[d[v], d[u] + w(u, v)]$
9. End
10. EndWhile

$$\blacktriangleright$$
 Cost: $O(n^2)$.

– Graphs

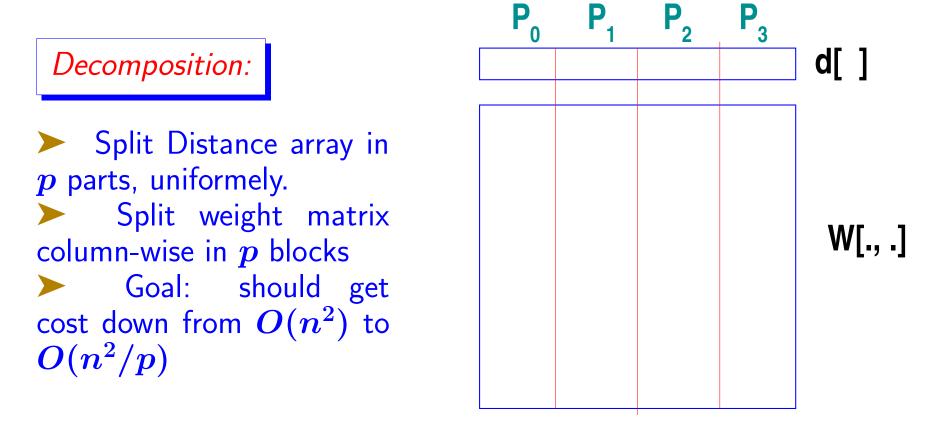
Dijkstra's Algorithm – Example



Dijkstra's Algorithm – Parallel Implementation

First observation: Difficult to parallelize the while loop..

Fairly easy to parallelize costlier steps of while loop within each iteration.



16-9

- > Main steps Assume we are at step k.
- * Each process finds its min. distance.
- * Reduction to find global min.
- * Process which achieves min. broadcasts the node \boldsymbol{u} that achieves min
- * Also marks \boldsymbol{u} as a Tree-node
- * All processes updates their distances.

 \blacktriangleright Line 5 of Algorithm: Requires computing a local min. and doing a reduction operation. Cost of k-th step:

$$rac{(n-k)}{p}\omega + \log(p)(t_s+t_w)$$

Line 6: Broadcast of u, d(u) to all. Cost: $\log(p)(t_s + 2 * t_w)$

Lines 7-8-9: require no communication. But update itself costs $\frac{n-k}{p}\omega$ (Assuming $V - V_T$ uniformly distributed each time)

► Total (Order only) $\Theta(n^2/p) + \Theta(n\log(p))$

▶ Cost-optimal if $p = O(n/\log(n))$.

 \swarrow_1 Show the above result.

Minimum Cost Spanning Tree (Undirected Graphs)

<u>Definitions</u>: A spanning tree of a graph G = (V, E) is a connected subgraph $T = (V_T, E_T)$ of G, which is a tree and whose vertices are all the vertices of G, i.e., $V_T = V$. The cost of T is the sum of the weights of all edges e of the tree,

$$Cost(T) = \sum_{e \in E_T} w(e)$$

<u>Problem</u>: Given a weighted graph find its minimum cost spanning tree. (MCST)

Easy to see that the MCST must indeed be a tree.

Graphs

> Applications:

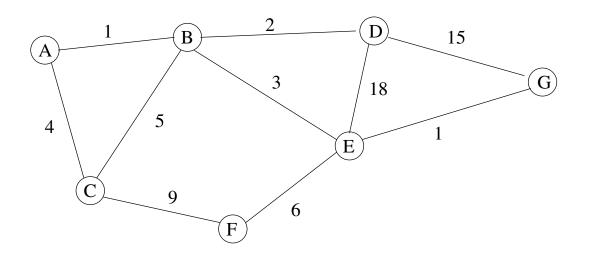
- Minimum cost transit system: want to link all localities in a given city; but would like the total of all distances over all route segments to be minimum.
- Network of computers: need to broadcast a message to all nodes in a network from arbitrary nodes. The minimum cost spanning tree allows to do so in best time on the average
- Two solutions to the problem:
- 1. Prim's algorithm: almost identical with Dijkstra's shortest path algorithm;
- 2. Kruskal's algorithm: Adds one edge at a time, in increasing order of weight.

Minimum Cost Spanning Tree: Prim's Algorithm

ALGORITHM : 2.
$$Prim(G,r)$$
Initialize:1. For each $v \in V$ set:2. $d[v] = 0$ if $v == r$ and $d[v] = \infty$ otherwise.3. Set $V_T = \emptyset$.Iterate:4. While $V_T \neq V$ do5. Find u s.t. $d[u] = \min[d[v], v \in V - V_T]$ 6. $V_T = V_T \cup \{u\}$ 7. For each $v \in V - V_T$ set:8. $d[v] = \min[d[v], w(u, v)] \leftarrow Only$ Change9. End10. EndWhile

16-14

Prim's Algorithm – Example



Step	Tree	Pseudo-Distances
0	Ø	$[0,\infty,\infty,\infty,\infty,\infty,\infty]$
1	A	$[\ ,1,4,\infty,\infty,\infty,\infty]$
2	AB	$[\ ,\ ,4,2,3,\infty,\infty]$
:		
:		
7	ABCDEFG	

– Graphs

Prim's Algorithm – Parallel implementation

- Cost = identical with Dijkstra's algorithm
- Parallel Implementation = identical with Dijkstra's algorithm

The all-pairs Shortest path problem

The problem:

Find the shortest path between any pair of vertices $m{i}$ and $m{j}$

> Can be solved by using the shortest path algorithm from each node in turn. Cost = $O(n^3)$.

> Another solution: Floyd's algorithm [also referred to as Floyd-Warshall algorithm] – whose cost is also $O(n^3)$.

> Builds incrementally shortest paths between i and j where all intermediate vertices are in the set

$$S_k = \{1, 2, \cdots, k\}.$$

- Graphs

Observation:

16-18

Shortest path throuh S_k = either shortest path throuh S_{k-1} or shortest path from i to k followed by shortest path from k to j through S_{k-1} . Hence,

$$d_{ij}^{(k)} = \left\{egin{array}{cc} w_{ij} & ext{if } k == 0 \ \min[d_{ij}^{(k-1)} \ , d_{ik}^{(k-1)} + d_{kj}^{(k-1)}] & ext{if } k \geq 1 \end{array}
ight.$$

 \blacktriangleright Algorithm: compute these distances for k=1,...,n

Computation can be done in place [i.e., only one matrix is needed.] This is because k-th column (and row) of $D^{(k)}$ does not change from $D^{(k-1)}$ [set i = k and then j = k in above formulas]

ALGORITHM : 3. Floyd(G)
0.
$$D^{(0)} = W$$

1. For $k = 1 : n$ Do:
2. For $i = 1 : n$ Do:
3. For $j = 1 : n$ Do:
4. $d_{ij}^{(k)} = \min[d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}]$
5. End
6. End
7. End

Note: computation pattern somewhat similar to Gaussian Elimination.

Explore these similarities

Like GE we can define a broadcast version and a pipelined version of the algorithm.

	-		-
- 1	<u> </u>	- 1	\mathbf{n}
	()-	- 1	ч
	<u> </u>	-	<u> </u>

➤ Can devise a row-based algorithm with broadcasts [No need to interleave rows into processors for better load balance] - Can also devise a pipelined row algorithm -

Can devise 2-D mapping generalizations of the above two options.

Illustration of Floyd's algorithm

