
GRAPH ALGORITHMS

• Introduction to graphs - representations

• Single source shortest path: Dijkstra’s algorithm

• Minimum cost spanning tree: Prim’s algorithm

• All source shortest paths

16-1

Graphs – definitions & representations

Definition: A graph G = (V,E) consists of a set V of vertices
and a set E of edges. The elements of E are pairs (u, v) with
u, v ∈ V . If the pairs are ordered then the graph is directed,
otherwise it is undirected.

Terminology:

• Digraph = Directed graph.

• When (u, v) ∈ E, we say that u and v are adjacent and that
the edge (u, v) is incident to u and v.

16-2 – Graphs

16-2

A graph G = (V,E) is a representation of a certain binary relation.
If R is a binary relation between elements in V then, we can represent
it by a graph G = (V,E) as follows:

(u, v) ∈ E ↔ u R v

ä Undirected graph↔ symmetric relation.

First graph: (1) R (2); (4) R
(1); (2) R (3); (3) R (2); (3)
R (4);

Second graph: (1) R (2); (2)
R (3); (3) R (4); (4) R (1).

16-3 – Graphs

16-3

Graphs – Adjacency matrix representation

ä Assume that there are
n vertices. Then the adja-
cency matrix is an n × n
matrix, with

ai,j =

{
1 if (i, j) ∈ E
0 Otherwise

1 1

1

1

1

11

1

1

34

1

1

1 1

1

1 2

34

2

ä Matrix is symmetric when graph is undirected

ä OK scheme but wasteful for sparse graphs

ä More on sparse matrices later.

16-4 – Graphs

16-4

Graphs – shortest part algorithm

Definition: A weighted graph G = (V,E,W) is a graph in
which each edge is weighted, i.e., each edge has an associated
weight. The length of a path is the sum of the weights of all the
edges in the path.

ä The weights are usually positive numbers. [but can also be
nonpositive in some applications]

Problem: Given a node s, find the shortest paths from s to all
other nodes in the weighted graph G.

ä Called One-source shortest path problem

ä Another problem: Find shortest path from any vertex to any
other vertex

16-5 – Graphs

16-5

Graphs – Dijkstra’s algorithm

ä Idea of shortest path algorithm very similar to breadth-first-search.

ä Good implementation for sparse graphs: Priority Queue

Differences with BFS:

• Need distances from starting node. Update these distances as we
do the traversal;

• Always take the next node to be removed from queue to be the
one with smallest distance.

ä We will consider simple implementations for dense graphs

16-6 – Graphs

16-6

ALGORITHM : 1 Shortest Path(G,r)
Initialize:
1. For each v ∈ V set:
2. d[v] = 0 if v == r and d[v] =∞ otherwise.
3. Set VT = ∅.
Iterate:
4. While VT 6= V do
5. Find u s.t. d[u] = min[d[v], v ∈ V − VT]
6. VT = VT ∪ {u}
7. For each v ∈ V − VT set:
8. d[v] = min[d[v], d[u] + w(u, v)]
9. End
10.EndWhile

ä Cost: O(n2).

16-7 – Graphs

16-7

Dijkstra’s Algorithm – Example

Original Graph

A
B

C

D

E

F

G

1

4

2
15

1

6
9

5

183

→

Resulting Tree &
Distances

1

4

3

4

5

10

A
B

C

D

E

F

G

1

4

2
15

1

6
9

5

183

16-8 – Graphs

16-8

Dijkstra’s Algorithm – Parallel Implementation

ä First observation: Difficult to parallelize the while loop..

ä Fairly easy to parallelize costlier steps of while loop within each
iteration.

Decomposition:

ä Split Distance array in
p parts, uniformely.
ä Split weight matrix
column-wise in p blocks
ä Goal: should get
cost down from O(n2) to
O(n2/p)

d[]

W[., .]

1
PP P

32
P

0

16-9 – Graphs

16-9

ä Main steps – Assume we are at step k.

* Each process finds its min. distance.

* Reduction to find global min.

* Process which achieves min. broadcasts the node u that achieves
min

* Also marks u as a Tree-node

* All processes updates their distances.

16-10 – Graphs

16-10

ä Line 5 of Algorithm: Requires computing a local min. and doing
a reduction operation. Cost of k-th step:

(n− k)

p
ω + log(p)(ts + tw)

ä Line 6: Broadcast of u, d(u) to all. Cost:

log(p)(ts + 2 ∗ tw)

ä Lines 7-8-9: require no communication. But update itself costs
n−k
p

ω (Assuming V − VT uniformly distributed each time)

ä Total (Order only) Θ(n2/p) + Θ(n log(p))

ä Cost-optimal if p = O(n/ log(n)).

-1 Show the above result.

16-11 – Graphs

16-11

Minimum Cost Spanning Tree (Undirected Graphs)

Definitions: A spanning tree of a graph G = (V,E) is a connected
subgraph T = (VT , ET) of G, which is a tree and whose vertices
are all the vertices of G, i.e., VT = V . The cost of T is the sum
of the weights of all edges e of the tree,

Cost(T) =
∑

e∈ET

w(e)

Problem: Given a weighted graph find its minimum cost spanning
tree. (MCST)

ä Easy to see that the MCST must indeed be a tree.

16-12 – Graphs

16-12

ä Applications:

• Minimum cost transit system: want to link all localities in a given
city; but would like the total of all distances over all route segments
to be minimum.

• Network of computers: need to broadcast a message to all nodes
in a network from arbitrary nodes. The minimum cost spanning
tree allows to do so in best time on the average

ä Two solutions to the problem:

1. Prim’s algorithm: almost identical with Dijkstra’s shortest path
algorithm;

2. Kruskal’s algorithm: Adds one edge at a time, in increasing order
of weight.

16-13 – Graphs

16-13

Minimum Cost Spanning Tree: Prim’s Algorithm

ALGORITHM : 2 Prim(G,r)
Initialize:
1. For each v ∈ V set:
2. d[v] = 0 if v == r and d[v] =∞ otherwise.
3. Set VT = ∅.
Iterate:
4. While VT 6= V do
5. Find u s.t. d[u] = min[d[v], v ∈ V − VT]
6. VT = VT ∪ {u}
7. For each v ∈ V − VT set:
8. d[v] = min[d[v], w(u, v)] ← Only Change
9. End from Dijkstra
10.EndWhile

16-14 – Graphs

16-14

Prim’s Algorithm – Example

A
B

C

D

E

F

G

1

4

2
15

1

6
9

5

183

Step Tree Pseudo-Distances
0 ∅ [0,∞,∞,∞,∞,∞,∞]
1 A [, 1, 4,∞,∞,∞,∞]
2 A B [, , 4, 2, 3,∞,∞]
...
...
7 A B C D E F G

16-15 – Graphs

16-15

Prim’s Algorithm – Parallel implementation

ä Cost = identical with Dijkstra’s algorithm

ä Parallel Implementation = identical with Dijkstra’s algorithm

16-16 – Graphs

16-16

The all-pairs Shortest path problem

The problem:

Find the shortest path between any pair of vertices i and j

ä Can be solved by using the shortest path algorithm from each
node in turn. Cost = O(n3).

ä Another solution: Floyd’s algorithm [also referred to as Floyd-
Warshall algorithm] – whose cost is also O(n3).

ä Builds incrementally shortest paths between i and j where all
intermediate vertices are in the set

Sk = {1, 2, · · · , k}.

16-17 – Graphs

16-17

Observation:

Shortest path throuh Sk = either shortest path throuh Sk−1 or
shortest path from i to k followed by shortest path from k to j
through Sk−1. Hence,

d
(k)
ij =

{
wij if k == 0

min[d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj] if k ≥ 1

ä Algorithm: compute these distances for k = 1, ..., n

ä Computation can be done in place [i.e., only one matrix is needed.]
This is because k-th column (and row) of D(k) does not change from
D(k−1) [set i = k and then j = k in above formulas]

16-18 – Graphs

16-18

ALGORITHM : 3 Floyd(G)
0. D(0) = W
1. For k = 1 : n Do:
2. For i = 1 : n Do:
3. For j = 1 : n Do:

4. d
(k)
ij = min[d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj]

5. End
6. End
7. End

ä Note: computation pattern somewhat similar to Gaussian Elimi-
nation.

-2 Explore these similarities

ä Like GE we can define a broadcast version and a pipelined version
of the algorithm.

16-19 – Graphs

16-19

ä Can devise a row-based algorithm with broadcasts [No need to
interleave rows into processors for better load balance] – Can also
devise a pipelined row algorithm -

ä Can devise 2-D mapping generalizations of the above two options.

Illustration of Floyd’s algorithm

k

j

i

d(i,j) = min (d(i,j), d(i,k)+d(k,j))

16-20 – Graphs

16-20

