
SPARSE MATRICES

• Introduction to sparse matrices

• General intro: solving linear systems

• Graph representation of sparse matrices

• Computing with sparse matrices: Matrix-vector produts

• Graph partitioning, Graph Laplaceans

17-1

What are sparse matrices?

Pattern of a small sparse matrix
17-2 – sparse

17-2

ä For all practical purposes: an m × n matrix is sparse if it has
O(min(m,n)) nonzero entries.

ä This means roughly a constant number of nonzero entries per row
and column. Issue: This definition excludes a large class of matrices
that have O(log(n)) nonzero entries per row.

ä Other definitions use a slow growth of nonzero entries with respect
to n or m.

‘‘..matrices that allow special techniques to take advantage of the
large number of zero elements.” (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir sim-
ulation, Electrical Networks, optimization, Google Page rank, infor-
mation retrieval (LSI), circuit similation, device simulation,

17-3 – sparse

17-3

Goal of Sparse Matrix Techniques

ä To perform standard matrix computations economically i.e., with-
out storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires
O(n2) operations. To add two sparse matrices A and B requires
O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero
elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of
nonzero elements is O(n).

Remark:
A−1 is usually dense, but L and U in the LU factor-
ization may be reasonably sparse (if a good technique
is used)

17-4 – sparse

17-4

Graph Representations of Sparse Matrices

ä Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V,E)
with E ⊂ V × V . So G represents a binary relation. The
graph is undirected if the binary relation is reflexive. It is directed
otherwise. V is the vertex set and E is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two
graphs representing the relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]

17-5 – sparse

17-5

ä Adjacency Graph G = (V,E) of an n× n matrix A :

• Vertices V = {1, 2,, n}.

• Edges E = {(i, j)|aij 6= 0}.

ä Often self-loops (i, i) are not represented [because they are
always there]

ä Graph is undirected if the matrix has a symmetric structure:

aij 6= 0 iff aji 6= 0.

17-6 – sparse

17-6

Example: (directed graph)

?
?

? ?
?

1 2

34

Example: (undirected graph)

? ?
? ?
? ?

? ?

1

3

2

4

17-7 – sparse

17-7

-1 Adjacency graph of:

A =

? ? ?
? ? ? ?
? ?

? ?
? ? ? ?
? ? ?

.

-2 Graph of a tridiagonal matrix? Of a dense matrix?

-3 Recall what a star graph is. Show a matrix whose graph is a
star graph. Consider two situations: Case when center node is labeled
first and case when it is labeled last.

17-8 – sparse

17-8

Distributed Sparse Systems

ä Simple illustration:
Block assignment. Assign
equation i and unknown i
to a given ’process’
ä Naive partitioning -
won’t work well in practice

17-9 – DD

17-9

ä Best idea is to use the adja-
cency graph of A:

Vertices = {1, 2, · · · , n};
Edges: i→ j iff aij 6= 0 1 1

1

1

1

11

1

1

34

1

1

1 1

1

1 2

34

2

Graph partitioning problem:

• Want a partition of the vertices of the graph so that

(1) partitions have ∼ the same sizes

(2) interfaces are small in size

17-10 – DD

17-10

General Partitioning of a sparse linear system

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

S1 = {1, 2, 6, 7, 11, 12}:
This means equations and un-
knowns 1, 2, 3, 6, 7, 11, 12 are
assigned to Domain 1.
S2 = {3, 4, 5, 8, 9, 10, 13}
S3 = {16, 17, 18, 21, 22, 23}
S4 = {14, 15, 19, 20, 24, 25}

17-11 – DD

17-11

Alternative: Map elements / edges rather than vertices

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

Equations/unknowns 3, 8, 13
shared by 2 domains. From dis-
tributed sparse matrix viewpoint
this is an overlap of one layer

ä Partitioners : Metis, Chaco, Scotch, Zoltan, H-Metis, PaToH, ..

ä Standard dual objective: “minimize” communication + “balance”
partition sizes
17-12 – DD

17-12

17-13 – DD

17-13

A few words about hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes
when partitioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning prob-
lems and provide better solutions.

ä Example: completely nonsymmetric patterns ... Even rectangular
matrices

Main idea: an edge now can consist of a small set of more than 2
vertices. Most common example: edge = column indices of nonzero
entries of a row of a matrix. See next example.

17-14 – DD

17-14

Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}

6 6

l

6 6

l

l
l

6

66

66

l

1

2

3

4

5

67

8
9

a b

c
d

e

net e

net d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e

17-15 – DD

17-15

Distributed Sparse matrices (continued)

ä Once a good partitioning is found, questions are:

1. How to represent this partitioning?

2. What is a good data structure for representing distributed sparse
matrices?

3. How to set up the various “local objects” (matrices, vectors, ..)

4. What can be done to prepare for communication that will be
required during execution?

17-16 – DD

17-16

Two views of a distributed sparse matrix

External interface

nodes

Internal

nodes

Local interface

nodes

XiXi

A
i

ä Local interface variables always ordered last.

ä Need: 1) to set up the various “local objects”. 2) Preprocessing
to prepare for communications needed during iteration?

17-17 – DD

17-17

Local view of distributed matrix:

local

Data
External data External data

OO A i

iX Xi

The local system:

(
Bi Fi
Ei Ci

)

︸ ︷︷ ︸
Ai

(
ui
yi

)
+

(
0∑

j∈Ni
Eijyj

)

︸ ︷︷ ︸
yext

=

(
fi
gi

)

ä ui : Internal variables; yi : Interface variables

17-18 – DD

17-18

The local matrix:

Local

points

Internal
Points

Interface

A
loc

B
ext

The local matrix consists of 2
parts: a part (’Aloc’) which
acts on local data and another
(’Bext’) which acts on remote
data.

ä Once the partitioning is available these parts must be identified
and built locally..

ä In finite elements, assembly is a local process.

ä How to perform a matrix vector product? [needed by iterative
schemes?]

17-19 – DD

17-19

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y +Bextxext

NOTE: 1 and 2 are independent and can be overlapped.

17-20 – DD

17-20

Distributed Sparse Matrix-Vector Product

Main part of the code:

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
c
c do local matrix-vector product for local points
c

call amux(nloc,x,y,aloc,jaloc,ialoc)
c
c receive the boundary information
c

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,
* ptrn,ierr)

c
c do local matrix-vector product for external points
c

nrow = nloc - nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

c
return

17-21 – DD

17-21

The local exchange information

ä List of adjacent processors (or subdomains)

ä For each of these processors, lists of boundary nodes to be sent
/ received to /from adj. PE’s.

ä The receiving processor must have a matrix ordered consistently
with the order in which data is received.

Requirements

ä The ‘set-up’ routines should handle overlapping

ä Should use minimal storage (only arrays of size nloc allowed).

17-22 – DD

17-22

Main Operations in a typical iterative solver

1. Saxpy’s – local operation – no communication

2. Dot products – reduction operation (global)

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.

Distributed Dot Product

/*-------------------- call blas1 function */
tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction */
MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

17-23 – DD

17-23

Graph Laplaceans - Definition

ä “Laplace-type” matrices associated with general undirected graphs
– useful in many applications

ä Given a graph G = (V,E) define

• A matrix W of weights wij for each edge

• Assume wij ≥ 0,, wii = 0, and wij = wji ∀(i, j)
• The diagonal matrix D = diag(di) with di =

∑
j 6=iwij

ä Corresponding graph Laplacean of G is:

L = D −W

ä Gershgorin’s theorem→ L is positive semidefinite.

17-24 – Glaplacians

17-24

ä Simplest case:

wij =

{
1 if (i, j) ∈ E&i 6= j
0 else

D = diag

di =

∑

j 6=i
wij

Example:
Consider the graph

●

●● ●

5

2

34

1

●

L =

1 −1 0 0 0
−1 2 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 −1 −1 −1 3

17-25 – Glaplacians

17-25

-4 Define the graph Laplacean for the
graph associated with the simple mesh
shown next. [use the simple weights of
0 or 1]. What is the difference with the
discretization of the Laplace operator for
case when mesh is the same as this graph?

1 2 3

6 8

109 11 12

4

5 7

Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{1}
(iv) If G has k > 1 connected components G1, G2, · · · , Gk,
then the nullity of L is k and Null(L) is spanned by the vectors
z(j), j = 1, · · · , k defined by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.

17-26 – Glaplacians

17-26

A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and local
distances between entries of x
ä Let L = any matrix s.t. L = D −
W , with D = diag(di) and

wij ≥ 0, di =
∑

j 6=i
wij

Property : for any x ∈ Rn :

x>Lx =
1

2

∑

i,j

wij|xi − xj|2

17-27 – Glaplacians

17-27

Property : (Graph partitioning) Consider situation when wij ∈
{0, 1}. If x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used to partition graphs

+1

−1

17-28 – Glaplacians

17-28

Goal: “minimze number of edge-cuts while domain sizes are (about)
the same”

ä Would like to minimize (Lx, x) subject to x ∈ {−1, 1}n and
eTx = 0 [balanced sets]

ä Wll solve a relaxed form of this problem

-5 What if we replace x by a vector of ones (representing one
partition) and zeros (representing the other)?

-6 Let x be any vector and y = x+α1 and L a graph Laplacean.
Compare xTLx with yTLy).

17-29 – Glaplacians

17-29

ä Consider any symmetric (real) matrix A with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1

ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves a relaxed form
of the problem -

17-30 – Glaplacians

17-30

min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x) → min
x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))

17-31 – Glaplacians

17-31

Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based

on Fielder vector
3 Partition largest subgraph

in two recursively ...
4 ... Until the desired num-

ber of partitions is reached

17-32 – Glaplacians

17-32

Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice
et al., Miller, Vavasis, Teng et al.]

3. Graph Theory techniques – multilevel,... [use graph, but no coor-
dinates]

• Currently best known technique is Metis (multi-level algorithm)
• Simplest idea: Recursive Graph Bisection; Nested dissection

(George & Liu, 1980; Liu 1992]
• Advantages: simplicity – no coordinates required

17-33 – Glaplacians

17-33

Application: Back to Dijkstra’s algorithm

ä Recall the following picture – (go back to Graphs)

Decomposition:

ä Split Distance array in p parts,
uniformely.
ä Split weight matrix column-
wise in p blocks
ä First: Use the exact same
partitioning (naive) for simplicity.
ä Then use a Domain-Decom-
position –type partitioning.

d[]

W[., .]

1
PP P

32
P

0

-7 Figure out how to adapt the algorithm to the sparse case. [Hint:
the update operation is very similar to a parallel sparse matvec]

17-34 – Glaplacians

17-34

