SPARSE MATRICES

- Introduction to sparse matrices
- General intro: solving linear systems
- Graph representation of sparse matrices
- Computing with sparse matrices: Matrix-vector produts
- Graph partitioning, Graph Laplaceans

What are sparse matrices?

Pattern of a small sparse matrix

For all practical purposes: an $m \times n$ matrix is sparse if it has $O(\min(m, n))$ nonzero entries.

17-1

This means roughly a constant number of nonzero entries per row and column. Issue: This definition excludes a large class of matrices that have $O(\log(n))$ nonzero entries per row.

Other definitions use a slow growth of nonzero entries with respect to *n* or *m*.

"...matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,

17-3

Goal of Sparse Matrix Techniques

➤ To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

17-2

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

Remark: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used)

17-4

17-3

- sparse

Example:
$$V = \{1, \dots, 9\}$$
 and $E = \{a, \dots, e\}$ with $a = \{1, 2, 3, 4\}$, $b = \{3, 5, 6, 7\}$, $c = \{4, 7, 8, 9\}$, $d = \{6, 7, 8\}$, and $e = \{2, 9\}$

17-15

17-15

A few words about hypergraphs

► Hypergraphs are very general.. Ideas borrowed from VLSI work

▶ Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations

► Hypergraphs can better express complex graph partitioning problems and provide better solutions.

> Example: completely nonsymmetric patterns ... Even rectangular matrices

Main idea: an edge now can consist of a small set of more than 2 vertices. Most common example: edge = column indices of nonzero entries of a row of a matrix. See next example.

17-14

Distributed Sparse matrices (continued)

- > Once a good partitioning is found, questions are:
- 1. How to represent this partitioning?
- 2. What is a good data structure for representing distributed sparse matrices?
- 3. How to set up the various "local objects" (matrices, vectors, ..)
- 4. What can be done to prepare for communication that will be required during execution?

17-16

17-16

– DD

17-14

-DD

17-19

17-19

- DD

17-20

– DD

17-20

Distributed Sparse Matrix-Vector Product

Main part of the code:

Main Operations in a typical iterative solver

1. Saxpy's – local operation – no communication

- 2. Dot products reduction operation (global)
- 3. Matrix-vector products local operation local communication

17-21

4. Preconditioning operations – locality varies.

Distributed Dot Product

/*----- call blas1 function */
 tloc = DDOT(n, x, incx, y, incy);
/*----- call global reduction */
 MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

Graph Laplaceans - Definition

The local exchange information

List of adjacent processors (or subdomains)

"Laplace-type" matrices associated with general undirected graphs
 useful in many applications

17-22

- > Given a graph G = (V, E) define
- A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0,, \; w_{ii} = 0,$ and $w_{ij} = w_{ji} \; orall (i,j)$
- ullet The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{j
 eq i}w_{ij}$
- Corresponding graph Laplacean of G is:

$$L = D - W$$

17-24

> Gershgorin's theorem $\rightarrow L$ is positive semidefinite.

17-23

17-23

- DD

17-24

- Glaplacians

 \swarrow_{14} Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

Proposition:

(i) *L* is symmetric semi-positive definite.

(ii) L is singular with 1 as a null vector.

(iii) If G is connected, then $Null(L) = span\{1\}$ (iv) If G has k > 1 connected components G_1, G_2, \dots, G_k , then the nullity of L is k and Null(L) is spanned by the vectors

 $z^{(j)}$, $j=1,\cdots,k$ defined by:

$$(z^{(j)})_i = egin{cases} 1 ext{ if } i \in G_j \ 0 ext{ if not.} \end{cases}$$

– Glaplacians

Strong relation between $x^T L x$ and local distances between entries of x \blacktriangleright Let L = any matrix s.t. L = D - W, with $D = diag(d_i)$ and $w_{ij} \ge 0, \qquad d_i = \sum_{i \ne i} w_{ij}$

Property : for any $x \in \mathbb{R}^n$:

$$x^ op L x = rac{1}{2}\sum_{i,j} w_{ij} |x_i-x_j|^2 \; .$$

17-27

Property : (Graph partitioning) Consider situation when $w_{ij} \in \{0, 1\}$. If x is a vector of signs (± 1) then

17-26

 $x^ op Lx = 4 imes$ ('number of edge cuts') edge-cut = pair (i,j) with $x_i
eq x_j$

> Consequence: Can be used to partition graphs

17-28

17-28

Glaplacians

17-27

Goal: "minimze number of edge-cuts while domain sizes are (about) the same"

> Would like to minimize (Lx, x) subject to $x \in \{-1, 1\}^n$ and $e^T x = 0$ [balanced sets]

> WII solve a relaxed form of this problem

(Lx, x)

 \blacktriangleright Define $v = u_2$ then lab = sign(v - med(v))

What if we replace x by a vector of ones (representing one £05 partition) and zeros (representing the other)?

 \measuredangle_{16} Let x be any vector and $y = x + \alpha 1$ and L a graph Laplacean. Compare $x^T L x$ with $y^T L y$.

17-29

 \rightarrow

17-31

 \succ Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 < \lambda_1$ $\lambda_2 < \cdots < \lambda_n$ and eigenvectors u_1, \cdots, u_n

 $\min_{x\in \mathbb{R}^n}rac{(Ax,x)}{(x,x)}=\lambda_1$ ► Recall that: (Min reached for $x = u_1$) $\min_{x\perp u_1}rac{(Ax,x)}{(x,x)}=\lambda_2$ > In addition: (Min reached for $x = u_2$) \blacktriangleright For a graph Laplacean $u_1 = 1 =$ vector of all ones and \blacktriangleright ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -- Glaplacians 17-30 17-30 **Recursive Spectral Bisection 1** Form graph Laplacean **2** Partition graph in 2 based on Fielder vector **3** Partition largest subgraph in two recursively ...

4 ... Until the desired number of partitions is reached

17-29

min

 $x \in \{-1,1\}^n; \mathbf{1}^T x = 0 \quad (x,x)$

- Glaplacians

(Lx, x)

min

 ${old x} \in \mathbb{R}^n; {old 1}^{ \mathrm{\scriptscriptstyle T}} {old x} = 0 \ \ (x,x)$

17-32

