SPARSE MATRICES

e Introduction to sparse matrices

e General intro: solving linear systems

e Graph representation of sparse matrices

e Computing with sparse matrices: Matrix-vector produts

e Graph partitioning, Graph Laplaceans
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What are sparse matrices?

Pattern of a small sparse matrix
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»  For all practical purposes: an m X m matrix is sparse if it has
O(min(m, n)) nonzero entries.

» This means roughly a constant number of nonzero entries per row
and column. Issue: This definition excludes a large class of matrices
that have O(log(n)) nonzero entries per row.

» Other definitions use a slow growth of nonzero entries with respect
to n or m.

"..matrices that allow special techniques to take advantage of the
large number of zero elements.” (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir sim-
ulation, Electrical Networks, optimization, Google Page rank, infor-
mation retrieval (LSI), circuit similation, device simulation, .....
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Goal of Sparse Matrix Techniques

» To perform standard matrix computations economically i.e., with-
out storing the zeros of the matrix.

To add two square dense matrices of size n requires
O(n?) operations. To add two sparse matrices A and B requires

O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero
elements of a matrix X.

» For typical Finite Element /Finite difference matrices, number of
nonzero elements is O(n).

A~1is usually dense, but L and U in the LU factor-
Remark: | ization may be reasonably sparse (if a good technique
is used)
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Graph Representations of Sparse Matrices

»  Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V,, E)
with E C V X V. So G represents a binary relation. The
graph is undirected if the binary relation is reflexive. It is directed
otherwise. V' is the vertex set and E is the edge set.

Given the numbers 5, 3, 9, 15, 16, show the two

graphs representing the relations
R1: Either x < y or y divides .
R2: x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]
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» Adjacency Graph G = (V, E) of an n X n matrix A :
e Vertices V = {1,2,....,n}.
e Edges E = {(%,7)|a;; # 0}.

»  Often self-loops (i,%) are not represented [because they are
always there]

»  Graph is undirected if the matrix has a symmetric structure:

Q;j 7é 0 iff a;; 7& 0.
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(directed graph)
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Adjacency graph of:

* Kk *
* Kk & *
*x Kk
* *
* *x k Kk
* * *

A=

Graph of a tridiagonal matrix? Of a dense matrix?

Recall what a star graph is. Show a matrix whose graph is a
star graph. Consider two situations: Case when center node is labeled
first and case when it is labeled last.
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Distributed Sparse Systems

> Simple illustration:
Block assignment. Assign
equation ¢ and unknown %
to a given 'process’

»  Naive partitioning -
won't work well in practice

» Best idea is to use the adja- |-

cency graph of A:

Vertices = {1,2,--- ,n};
Edges: ¢+ — j iff a;; # 0

Graph partitioning problem:

1 2

4 3
2

1

4 3

e Want a partition of the vertices of the graph so that

(1) partitions have ~ the same sizes

(2) interfaces are small in size
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General Partitioning of a sparse linear system Alternative: | Map elements / edges rather than vertices
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S:1 = {1,2,6,7,11,12}:
This means equations and un-
knowns 1, 2, 3, 6, 7, 11, 12 are
assigned to Domain 1.

S, = {3,4,5,8,9,10,13}
S; = {16,17,18, 21, 22,23}
Sy = {14,15,19, 20, 24,25}
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Equations/unknowns 3, 8, 13
shared by 2 domains. From dis-
tributed sparse matrix viewpoint
this is an overlap of one layer

» Partitioners : Metis, Chaco, Scotch, Zoltan, H-Metis, PaToH, ..

» Standard dual objective: “minimize” communication 4+ “balance”

partition sizes
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A few words about hypergraphs

» Hypergraphs are very general.. Ideas borrowed from VLSI work

»  Main motivation: to better represent communication volumes
when partitioning a graph. Standard models face many limitations

» Hypergraphs can better express complex graph partitioning prob-
lems and provide better solutions.

» Example: completely nonsymmetric patterns ... Even rectangular
matrices

Main idea:  an edge now can consist of a small set of more than 2
vertices. Most common example: edge = column indices of nonzero
entries of a row of a matrix. See next example.
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w VvV ={1,...,9} and E = {a,...,e} with Distributed Sparse matrices (continued)
a=1{1,2,3,4}, b ={3,5,6,7}, ¢ = {4,7,8,9},
d=1{6,7,8} ande={2,9} »  Once a good partitioning is found, questions are:
1. How to represent this partitioning?
2. What is a good data structure for representing distributed sparse
Boolean matrix: trices?
123456789 matriees _ o
1111 3 3. How to set up the various “local objects” (matrices, vectors, ..)
/ 1 111 b 4. What can be done to prepare for communication that will be
ee A= 1 111c required during execution?
111 |d
net d 1 1le
net e
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Two views of a distributed sparse matrix

External interface

\\ / nodes
\

1

Local interface
nodes

1
1
‘%

» Local interface variables always ordered last.

» Need: 1) to set up the various “local objects”. 2) Preprocessing
to prepare for communications needed during iteration?
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Local view of distributed matrix:

1 . local

~—— External data : ol External data

| + Data

,,,,,,,,,,,,,,,,,,,,,,,,, Ayl Y
Xi Xj

The local system:

E; C; Yi ZjeNi Eijy; gi
(- -

~
Az’ Yeat

» w; : Internal variables; y; : Interface variables
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The local matrix:

1 The local matrix consists of 2
Internal parts: a part ("Ajo.’) which
Points Aloc ‘ acts on local data and another
7777777777777777777 ('Begt') which acts on remote
Local T
Int.erface Bext d ata.
points !

»  Once the partitioning is available these parts must be identified
and built locally..

» In finite elements, assembly is a local process.

» How to perform a matrix vector product? [needed by iterative
schemes?]
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Distributed Sparse Matriz- Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter pound to neighbors - Gather &, from neighbors

2. Local matrix — vector product

Yy = Alocmloc

3. External matrix — vector product

y=yvy + Bewtwewt

NOTE: 1 and 2 are independent and can be overlapped.
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Distributed Sparse Matriz- Vector Product

Main part of the code:

call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
do local matrix-vector product for local points
call amux(nloc,x,y,aloc,jaloc,ialoc)

receive the boundary information

a0 o0oo0o

call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,
* ptrn,ierr)

do local matrix-vector product for external points

[eNeKe!

nrow = nlo¢ - nbnd + 1
call amuxi(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

return
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The local exchange information

» List of adjacent processors (or subdomains)

»  For each of these processors, lists of boundary nodes to be sent
/ received to /from adj. PE’s.

»  The receiving processor must have a matrix ordered consistently
with the order in which data is received.

Requirements
»  The ‘set-up’ routines should handle overlapping

»  Should use minimal storage (only arrays of size nloc allowed).
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Main Operations in a typical iterative solver

1. Saxpy's — local operation — no communication
2. Dot products — reduction operation (global)
3. Matrix-vector products — local operation — local communication

4. Preconditioning operations — locality varies.

Distributed Dot Product

[ K call blasl function  */
tloc = DDOT(n, x, incx, y, incy);
ettt call global reduction */

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM, comm) ;
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Graph Laplaceans - Definition

» “Laplace-type” matrices associated with general undirected graphs
— useful in many applications

» Given a graph G = (V, E) define

e A matrix W of weights w;; for each edge

e Assume wij 2 0,, Wi = 0, and Wij = Wy; V(’L,]) |

e The diagonal matrix D = diag(d;) with d; = > _;_; w;;

» Corresponding graph Laplacean of G is:

L=D-W

»  Gershgorin's theorem — L is positive semidefinite.
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»  Simplest case:

_J1if (4,
Wij = {0 else

j) € B&i#j

onsider the graph 1 -1
1 2
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D = diag di = Z'wij

J#i

— Glaplacians
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Define the graph Laplacean for the o 10 11 12
graph associated with the simple mesh
shown next. [use the simple weights of
0 or 1]. What is the difference with the 3 6 7 8
discretization of the Laplace operator for
case when mesh is the same as this graph?

1

N
w
F-Y

Proposition:

(i) L is symmetric semi-positive definite.

(i) L is singular with 1 as a null vector.

(iii) If G is connected, then Null(L) = span{1}

(iv) If G has k > 1 connected components G1, G3, - , G,
then the nullity of L is k and Null(L) is spanned by the vectors
2z, j =1,k defined by:

(. _ 1if: € G
(= )1_{0if not.
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A few properties of graph Laplaceans

Property :  for any x € R™ :

17-27

1
x Lx = — E wij|T; — x; 2
2
i

Strong relation between 7 Lz and local
distances between entries of x
» Let L = any matrixst. L = D —
W, with D = diag(d;) and

wi; >0, di = ) wj

— Glaplacians

Property :  (Graph partitioning) Consider situation when w;; €
{0,1}. If @ is a vector of signs (£1) then

" Lx = 4 X (‘number of edge cuts’)

edge-cut = pair (2, J) with &; # x;

» Consequence: Can be used to partition graphs
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Goal:  “minimze number of edge-cuts while domain sizes are (about)
the same”

» Would like to minimize (L, x) subjecttox € {—1,1}" and

eTx = 0 [balanced sets]

»  WII solve a relaxed form of this problem

What if we replace & by a vector of ones (representing one
partition) and zeros (representing the other)?

Let @ be any vector and y = x+ a1 and L a graph Laplacean.
Compare T Lz with yT Ly).
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» Consider any symmetric (real) matrix A with eigenvalues A1 <
Ag < oo < A, and eigenvectors Uy, ¢ ¢, Uy,

»  Recall that: i (Az, z) _
(Min reached for & = wu;) zeR* (x, ) !
» |n addition: e (Az, z) =\

(Min reached for x = us) elu, (x,2)

» For a graph Laplacean uy; = 1 = vector of all ones and

» ..vector us is called the Fiedler vector. It solves a relaxed form
of the problem -
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: (L, x)
min —

. (Lzx, x)
— min ———=
ze{—1,1}7; 172—0 (m’ IB)

zER™; ].T:c:O (CII, :L')

» Define v = wug then lab = sign(v — med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based
on Fielder vector

3 Partition largest subgraph

in two recursively ...
4 ... Until the desired num-
ber of partitions is reached
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Three approaches to graph partitioning: Application: Back to Digkstra’s algorithm

1. Spectral methods - Just seen + add Recursive Spectral Bisection. > Recall the following picture — (go back to Graphs)
2. Geometric techniques. Coordinates are required. [Houstis & Rice Decomposition: P, P, P, P,
et al., Miller, Vavasis, Teng et al.] [ | d[ ]
3. Graph Theory techniques — multilevel,... [use graph, but no coor- » Split Distance array in p parts,
dinates] uniformely.
e Currently best known technique is Metis (multi-level algorithm) > Split b‘?’e'iht matrixcolumn-
e Simplest idea: Recursive Graph Bisection; Nested dissection vise IE'pt' 06 > th ) WL, ]
(George & Liu, 1980; Liu 1992] L Irete VS The exact same
CT _ , partitioning (naive) for simplicity.
e Advantages: simplicity — no coordinates required > Then use a Domain-Decom-
position —type partitioning.

Figure out how to adapt the algorithm to the sparse case. [Hint:
the update operation is very similar to a parallel sparse matvec]
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