
An introduction to

Quantum computing

• Quantum computing: A brief historical journey

• States, qubits, superposition, entanglement

• Existing packages: Cirq (main), Quiskit, Forest

• Examples

19-1

Resources:

1 “Quantum Computation and Quantum Information” 10th An-
niversary Edition, by Michael A. Nielsen & Isaac L. Chuang Cam-
bridge University Press.

2 J. D. Hidary “Quantum computing: An applied approach.”
Springer, 2019

3 Arxiv Article: “Quantum Algorithm Implementations for Begin-
ners”, P. J. Coles et al. arXiv:1804.03719v1 [cs.ET] 10-Apr. 2018

4 Austin Gilliam, Charlene Venci, Sreraman Muralidharan, Vitaliy
Dorum, Eric May, Rajesh Narasimhan, and Constantin Gonciulea
Foundational Patterns for Efficient Quantum Computing

5 Eleanor G. Rieffel, Wolfgang Polak “An Introduction to Quan-
tum Computing for Non-Physicists”, arXiv:quant-ph/9809016

19-2 – quantum

19-2

Historical perspective

Motivation: Moore’s law: harder and harder to gain speed out of
traditional computers

ä The Church-Turing thesis: Any algorithmic process can be sim-
ulated efficiently using a Turing machine.

ä However some types of computations may be difficult/ impossible
to solve efficiently on standard computers ...

ä ... but can be solved efficiently on non-standard computers –
e.g. “Analogue computers”

ä Question: How about trying to exploit properties of the quantum
world to solve ‘hard problems’?

19-3 – quantum

19-3

ä Question asked by David Deutsch in 1985 - answered the question
positively

ä Breakthrough: Shor’s algorithm [1994]: demonstration of how to
find prime factors of large integers – main ingredient of encryption

ä Currently: Huge regain of interest from governments and private
sector

ä Note: IBM has an experimental quantum computer (’Q’ com-
puter, 53 qubits) as does Google (’Sycamore’ also 53 qubits),

ä Caveat emptor: No one knows if QC will succeed in becoming
general purpose platforms that will eventually replace current com-
puters..

19-4 – quantum

19-4

A few nanoseconds worth of quantum mechanics

• At the end of the 19th century it was discovered that classical mechanics does

not provide an accurate picture of the microcoscopic world. A few discoveries made

in those days set in motion one of the most important and fascinating chapters

of physics. See: “30 years that shook physics” - by George Gamov, Dover for an

interesting account.

ä The quantum world is very different from classical one. Can be
counter-intuitive.

ä If one observes a quantum object it looks like a particle, but when
it is not being observed it behaves like a wave.

ä Wave-particle duality→ many interesting physical phenomena.

ä Example: quantum objects can exist in multiple states at once.
Superposition of these objects interfere like waves to define a quan-
tum state. The main property that gives quantum computing its
power: superposition of states
19-5 – quantum

19-5

Superposition

“ Imagine a pot with water in it. When you have water in a pot with a top on it, you don’t know

if it’s boiling or not. Real water is either boiling or not; looking at it doesn’t change its state. But

if the pot was in the quantum realm, the water (representing a quantum particle) could both be

boiling and not boiling at the same time or any linear superposition of these two states. If you

took the lid off of that quantum pot, the water would immediately be one state or the other. The

measurement forces the quantum particle (or water) into a specific observable state.”

ä The state of a quantum-mechanical system is described by a
wavefunction ψ - a function of the coordinates of each particle..
This function is a solution of the Schrödinger equation.

ä The wavefunction ψ lies in a complex Hilbert space [think of this
Cn where n =∞]

ä The wavefunction ψ is a linear combination of some orthonormal
basis functions (e.g. the eigenstates of the Hamiltonian)

19-6 – quantum

19-6

Schrödinger equation

i~∂Ψ
∂t

= HΨ

ä The Hamiltonian in its original form is very complex:

H = − h
2

2m

∑

i

∇2
~ri

+
∑

i,j

e2

|~ri − ~rj|2
−
∑

i

∑

k

Zke
2

|~ri − ~Rk|2

− h2

2M

∑

k

∇2
~Rk

+
∑

k,l

e2

|~Rk − ~Rl|2

ä Involves sums over all electrons / nuclei and their pairs in terms
involving Laplaceans, distances betweens electrons /nuclei.

19-7 – quantum

19-7

ä When we observe the state we see only one component. If we
repeat the experiment we may observe another state.. But the states
appear with probabilities given by the amplitudes = | coefficients |
squared.

ä Two or more quantum states in a system can be strongly linked:
measurement of one dictates the possible measurement outcomes for
another – regardless of the distance between the two objects.

ä The property underlying this phenomenon is known as entangle-
ment and it at the core of the huge potential power of QC.

Entanglement

Two qubits are entangled if they cannot act independently from one
another: They are 100% correlated. This situation is physical: the
counter-intuitive fact is that the correlation persists even when the
particles are physically far apart from each other.

19-8 – quantum

19-8

Q: How does QC work?

Answer: one can design quantum circuits that can be manipulated
with, e.g., energy fields – You design the circruit [this is like coding in
classical computing] - then the hardware will run the circuit and you
observe some output.. need to repeat and average. [one observation
by itself is useless]

19-9 – quantum

19-9

Quantum computing: Notation

• Linear algebra
notation:

ψ = a0ψ0 + a1ψ1 + · · ·+ ajψj + · · ·
• Quantum me-
chanics notation:

|ψ〉 = a0|0〉+ a1|1〉+ · · ·+ aj|j〉+ · · ·

ä Think of |ψ〉 as the column vector −→
ä Then 〈ψ| will be the transpose conjugate of this
vector




a0

a1
...
aj
...




ä 〈u|v〉 is the (complex) inner product of u and v - (a scalar).

ä ... |u〉〈v| is the ’outer product’ of u and v – a matrix (uvH in
standard LA notation)

19-10 – quantum

19-10

ä |ψ|2 represents a probability. Its integral
over space is 1, i.e.,

〈ψ|ψ〉 = 1

ä The energy of a system is governed by a Hamiltonian

E(ψ) = 〈ψ|H|ψ〉

ä Ground state: Minimum energy (i.e., ψ minimizes E(ψ))

ä This leads to an eigenvalue problem: (time-independent Schrödinger
equation)

HΨ = EΨ

19-11 – quantum

19-11

ä Feynman suggested to use a quantum-mechanical system to
actually compute the wavefunction

L. K.
Glover

Perhaps the most surprising thing about quantum com-
puting is that it was so slow to get started. Physicists
have known since the 1920s that the world of subatomic
particles is a realm apart, but it took computer scientists
another half-century to begin wondering whether quantum
effects might be harnessed for computation. The answer
was far from obvious.

Early work:

ä Charles Bennetts [physicist, IBM Watson]

ä Paul Benioff [Physicist, Argonne Nat. lab]

ä Richard Feynman [Physicist, Caltech]

19-12 – quantum

19-12

bits and qubits

ä Standard computers use bits. A bit can take the value 0 or 1.

ä A quantum bit or ‘qubit’ stores a combination of zero and one.
Its state is represented by

|ψ〉 = a0|0〉+ a1|1〉

where a0, a1 are complex and

|a0|2 + |a1|2 = 1

ä Difference with classical computing: if we ‘observe’ state |ψ〉 we
will see either |0〉 (probability |a0|2) or |1〉 (probability |a1|2)

19-13 – quantum

19-13

The Bloch sphere

* State of a single qubit: |ψ〉 = a0|0〉+ a1|1〉
* a1, a2 are complex. So in principle we would need 4 real variables

* Also recall that we must have |a0|2 + |a1|2 = 1

* First consider *real* com-
binations of the two base
states. Write in the form:

cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉

* Note: for θ = 0 we get |0〉 and for θ = π we get |1〉
* Add complex phase to the 2nd term (only) [keeping a0 real]:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉

19-14 – quantum

19-14

ä A qubit state can be represented on a so-called Bloch Sphere.

Case ϕ = 0

θ

1

0

General case

x

z

ϕ

θ

0

1

ψ

y

Note 0 ≤ θ ≤ π 0 ≤ ϕ < 2π

19-15 – quantum

19-15

-1 How did we manage to use a sphere (3 parameters) in 3
dimensions while we started off with 4 (real) parameters?

• Answer : we sacrified one phase because it made no difference - normally:

|ψ〉 = eiα0 cos

(
θ

2

)
|0〉+ eiα1 sin

(
θ

2

)
|1〉

= eiα0

[
cos

(
θ

2

)
|0〉+ ei(α1−α0) sin

(
θ

2

)
|1〉
]

The factor eiα0 makes no physical difference (all that matters is the 2-norm of
(
a0
a1

)
which is the

same). So we can set it to 1 to make a0 real. Then we set ϕ = α1 − α0 and discard the first

phase term.

-2 What are all 6 states that correspond to the 6 points where
the sphere touches the 3 axes (x, y, z axes). [Hint: 2 of these are
obvious. For the others determine θ and ϕ....]

-3 Take a state represented in the form
(

cos(θ/2)
sin(θ/2)eiϕ

)
. What are

the values of x, y, and z on the sphere?
19-16 – quantum

19-16

One-qubit Quantum operators

ä Operators that act on one qubit in a certain state (to produce
one qubit in a certain state)

ä Each operartor is a mapping from span{|0〉, |1〉} to itself

ä We use the basis: {|0〉, |1〉}.

ä In this basis |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

ä With this: Each operator can be viewed as a mapping from C2

to itself→ Can be expressed as a 2× 2 matrix.

• Note: Each of them is unitary [in particular it preserve length]

-4 Why is this property required?

ä Next w’ll see a few of the most important ones

19-17 – quantum

19-17

The NOT operator
[‘Pauli-X’ operator]

X =

(
0 1
1 0

)

If we apply X to the state |0〉 we get

(
0 1
1 0

)
×
(

1
0

)
=

(
0
1

)
= |1〉

ä Note: for j ∈ {0, 1} we have:

X|j〉 = |j ⊕ 1〉

where ⊕ is the exclusive or.

DIAGRAM: X or &%
'$

19-18 – quantum

19-18

(
1
0

)
−→

(
0
1

)
or |0〉 −→ |1〉

-5 What does this operation do to a point on the Bloch sphere?

Sol: The phase ϕ makes no difference. Assume it is 0.
(

cos(θ/2)
sin(θ/2)

)
−→

(
sin(θ/2)
cos(θ/2)

)
=

(
cos(π−θ

2
)

sin(π−θ
2

)

)

ä Verification : when applied to |+〉 = 1√
2

[|0〉+ |1〉] you get

the same result. The point is invariant - as expected.

ä θ → π − θ →: Symmetry about the x, y plane.

-6 What about the general cases when ϕ 6= 0?

19-19 – quantum

19-19

The Y operator

Y =

(
0 −i
i 0

)

Example:

Y |j〉 = (−1)ji|1⊕ j〉

DIAGRAM: Y

The Z operator

Z =

(
1 0
0 −1

)

Example:

Z|j〉 = (−1)j|j〉

DIAGRAM Z

19-20 – quantum

19-20

The Rϕ operator

Rϕ =

(
1 0
0 eiϕ

)

Example:

Rϕ|1〉 = eiϕ|1〉

DIAGRAM: Rϕ

Rϕ = phase shift op.

• Two particular cases:

ϕ = π/2 → S operator

rotates state by π
2

around z-axis

ϕ = π/4 → T operator

rotates state by π
4

around z-axis

Note that S = T 2

ä Alternative – and equivalent
on the Boch sphere – to Rϕ is:

Rz(ϕ) =

(
e−i

ϕ
2 0

0 ei
ϕ
2

)

-7 Explain why on Bloch sphere, Rϕ is equivalent to Rz(ϕ)

19-21 – quantum

19-21

ä Take a look at the Bloch sphere:
(

1 0
0 eiϕ

)(
cos(θ/2)

eiϕ0 sin(θ/2)

)

=

(
cos(θ/2)

ei(ϕ0+ϕ) sin(θ/2)

)

ä Rotation of angleϕ around z axis.

General case

x

z

ϕ

θ

0

1

ψ

y

ä The other two rotations Rx(θ) and Ry(θ) of angle θ around
the x and y axes respectively are:

-8 Bloch sphere: What
actions do you get when
ϕ = 0 ?

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)

Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)

19-22 – quantum

19-22

ä Note: It can be shown that

Rx(θ) = exp

(
−iθ

2
X

)

Ry(θ) = exp

(
−iθ

2
Y

)

Rz(θ) = exp

(
−iθ

2
Z

)

19-23 – quantum

19-23

The Hadamard operator

H =
1√
2

(
1 1
1 −1

)

Example:

H|0〉 = 1√
2
[|0〉+ |1〉]

DIAGRAM: H

Properties

-9 HXH =?

-10 HZH = X

-11 HYH =?

-12 H−1 =?

-13 H2 =?

-14 S2 =?

ä Later, we will exploit the relation HZH = X

ä The Hadamard gate plays a very important role in QC.

-15 Visualize the effect of the H gate on the Bloch sphere

19-24 – quantum

19-24

Note:

α|0〉+ β|1〉 X β|0〉+ α|1〉

α|0〉+ β|1〉 Z α|0〉 − β|1〉

α|0〉+ β|1〉 H α+β√
2
|0〉+ α−β√

2
|1〉

ä Classical setting: a gate
acts on 1 bit (e.g., the NOT
gate) or 2 bits (e.g., the AND
gate) to yield one bit.
ä Question: can we represent
all the QC single qubit gates
from combining a few basic
ones?

a

b

a OR b

a

b

a XOR b

a

a

b

a NAND b

NOT a

a

b

a NOR b

a

b

a AND ba NOT a

19-25 – quantum

19-25

Gates: Universality

Recall: In classical setting, only
one gate is needed to imple-

ment any function of bits - the
NAND gate

a b a AND b a NAND b
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Quantum setting: Any n-qubit gate can be made from 2-qubit

gates. Specifically: Any multiple qubit logic gate may be composed
from CNOT and single qubit gates.

ä This is because: Any unitary n × n can be decomposed as a
product of 2-level unitary matrices, i.e., unitary matrices that act only
on two-or-fewer vector components.

[essentially: rotations, and complex scalings]

19-26 – quantum

19-26

Two qubits

ä Let q0, q1 be two qubits.

ä |ij〉 means: q0 is in state |i〉 and q1 is in state |j〉
ä A 2-qubit register is a combination of 4 states

|ψ〉 = a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉

ä The space of these 4 states is C2 ⊗ C2

ä |ij〉 also represents: |i〉 ⊗ |j〉. We will often just write |i〉|j〉
ä If f = α|0〉+β|1〉 and g = γ|0〉+δ|1〉, what is |f〉⊗|g〉?
ä In what follows e1, e2, e3, e4 are the 4 canonical basis vectors
of C4,i.e., the 4 columns of the identity matrix.

19-27 – quantum

19-27

ä By convention the basis of the resulting space is

|ψ1〉 = |00〉 =

(
1
0

)
⊗
(

1
0

)
=e1

|ψ2〉 = |01〉, =

(
1
0

)
⊗
(

0
1

)
=e2

|ψ3〉 = |10〉, =

(
0
1

)
⊗
(

1
0

)
=e3

|ψ4〉 = |11〉, =

(
0
1

)
⊗
(

0
1

)
=e4

So for example |10〉 =




0
0
1
0


 , and |01〉 =




0
1
0
0


 .

19-28 – quantum

19-28

Entanglement: An example

Case 1: |ψ〉 = |00〉 Measuring |ψ〉 we will find with 100% prob-
ability that the first qubit q0 is |0〉 and similarly that q1 is |0〉.
Case 2: |ψ〉 = 1√

2
[|00〉+ |11〉]

* 50% chance of observing |00〉 and 50% chance of observing |11〉
* However, if we measure q0 and find that q0 = |0〉 then we know
that the outcome must be |00〉 therefore q1 = |0〉 also

* If we measure q0 and find that q0 = |1〉 then we know that the
outcome must be |11〉 therefore q1 = |1〉 also

* In case 2, the two qubits are 100% correlated. They are entangled

19-29 – quantum

19-29

A few important binary operators

ä Input: 2 qubits – out 2 qubits

SWAP

SWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




DIAGRAM:

X

X

CNOT

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




DIAGRAM:

•

��
��

19-30 – quantum

19-30

ä CNOT stands for controled not. Very important in quantum logic

ä First input qubit q0 plays the role of a control qubit.

ä Second qubit is the target qubit.

ä On output top qubit remains the same. Lower one is flipped
(’Not’ applied to it) when (and only when) control bit is |1〉.

The following exercise will help you understand this

-16 Determine the output states for each of all 4 possible inputs
states. Use the CNOT diagram to illustrate this.

19-31 – quantum

19-31

Logical operation of CNOT gate: if a is in state |1〉 flip qubit b

a----*----a
|

b---(+)----b’

|ab〉 |ab′〉
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

-17

0----*----? 0----*----?
| |

0---(+)---? 1---(+)---?

1----*----? 1----*----?
| |

0---(+)---? 1---(+)---?

19-32 – quantum

19-32

CZ

CZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




DIAGRAM:

•
•

ä Controlled Z operator

ä q0 = control qubit, q1 =

target

ä Z operator applied to q1 iff

q0 = |1〉
Note: CZ is symmetric, i.e.,

contol-target roles of q0, q1 can

be exchanged

19-33 – quantum

19-33

The Bell State

1 Start with q0 := |0〉 and q1 := |0〉
2 Apply Hadamard to q0 −→

q0 := H|0〉 = |+〉
3 Apply CNOT gate to q0 and q1: the

2 qbits are now entangled

DIAGRAM

H •

��
��

��

ä The resulting entangled state is the state |ψ〉 =
1√
2

[|00〉+ |11〉] of case 2 seen before. It is called a Bell State.

In quantum physics this involves two particles that form a so-called
EPR pair. [EPR stands for Einstein, Podolsky and Rosen]

• It is known that Einstein was very skeptical about quantum mechanics (“God does not play

dice” he once stated). In a 1935 article, Einstein, Podolsky and Rosen, tried to show that quantum

mechanics would lead to a contradiction.. – it was a contradiction to our logic of thinking. But

the nano world is different.

19-34 – quantum

19-34

L. K.
Glover

O
n

th
e

p
ow

er
of

qu
an

tu
m

co
m

pu
ti

ng
:

Thus from, say, 500 particles you could, in principle, create
a quantum system that is a superposition of as many as
2500 states. Each state would be a single list of 500
1’s and 0’s. Any quantum operation on that system-a
particular pulse of radio waves, for instance, whose action
was, say, to execute a controlled-NOT operation on the
175th and 176th qubits-would simultaneously operate on
all 2500 states. Hence with one machine cycle, one tick of
the computer clock, a quantum operation could compute
not just on one machine state, as serial computers do, but
on 2500 machine states at once! That number, which is
approximately equal to a 1 followed by 150 zeros, is far
larger than the number of atoms in the known universe.
Eventually, of course, observing the system would cause
it to collapse into a single quantum state corresponding
to a single answer, a single list of 500 1’s and 0’s – but
that answer would have been derived from the massive
parallelism of quantum computing.

19-35 – quantum

19-35

The 4 Bell States

ä In the form of an exercice

-18 Determine the four possible outputs when the inputs are in the
4 possible base states |00〉, |01〉, |10〉, and |11〉.

x

y
|βxy〉

H •

��
��

ä The 4 resulting states are called the 4 Bell states and denoted
by β00, β01, β10, β11, respectively

ä These are also called ‘EPR pairs’ or ‘EPR states’

19-36 – quantum

19-36

Three qubits

ä We now have 3 input qubits and 3 ouputs. Operators are 8× 8
matrices

ä State represented by eight vectors e1, e2, · · · , e8

Toffoli

Matrix = 8 × 8 Identity with
last 2 columns swapped.

DIAGRAM

��
��

•
•

ä q0 and q1 are both control

qubits; q2 = target

ä NOT operator applied to q2 iff

q0 = |1〉 AND q1 = |1〉
-19 Determine each of the ouput

states for all 8 possible inputs

19-37 – quantum

19-37

Other symbols used

• Measurement symbol �
�

• n qubit inputs
�
�
�
�n

• Apply operator n qubits
�
�
�
�n

H⊕n

19-38 – quantum

19-38

Quantum teleportation (outline of an example)

• Bob and Alice now live far apart. When together they generated
an EPR pair and each took one qubit of the pair before separating.

• Alice wants to send a qubit |ψ〉 to Bob by sending classical
information

• Difficulty: measuring |ψ〉 not possible [will yield one state]

• Solution: Interact the |ψ〉 with her half of the EPR state. Measure
the 2 qubits. Result one of 00, 01, 10, 11.

• Send this (classical info) info to Bob.

• Bob performs one of 4 operations [depending on what he received
from Alice]

• Bob recovers |ψ〉

19-39 – quantum

19-39

|β
00

>

H
M1

M2

|ψ>

|ψ>
{

ZX M2 M1

ä Notes: double lines carry classical information. Top 2 lines: Alice,
Bottom: Bob.

-20 Details to be added

19-40 – quantum

19-40

Resources: IBM and qiskit

• https://www.research.ibm.com/ibm-q/

• https://www.research.ibm.com/ibm-q/network/

• https://www.research.ibm.com/ibm-q/technology/devices/

• https://www.research.ibm.com/ibm-q/technology/simulator/

• https://qiskit.org/

• https://qiskit.org/aqua

• https://www.research.ibm.com/ibm-q/learn/what-is-quantum-computing/

• https://quantumexperience.ng.bluemix.net/qx/editor

20-1 – quantum2

20-1

Resources: cirq and Forest

Cirq

• https://github.com/quantumlib/Cirq

• https://cirq.readthedocs.io/en/stable

Forest

• https://github.com/rigetti/pyquil

• pyquil.readthedocs.io/en/latest

see

https://quantum-computing.ibm.com/support

20-2 – quantum2

20-2

Example: The Deutsch-Jozsa algorithm

ä One of the first algorithms to demonstrate usefulness of QC

Problem: given a function f from {0, 1} to itself determine whether
f is a constant function.

ä The function is constant when f(x) ≡ 0 ∀x or f(x) ≡ 1 ∀x
(∀= for all). It is balanced otherwise.
ä Here are all possible 2-bit functions:

ä Constant: f0, f1, balanced: fx, fx̄

x f0 f1 fx fx̄
0 0 1 0 1
1 0 1 1 0

ä Normally we need 2 evaluations to solve the problem [one eval.
= querying one qubit]

ä Can do it with one - with quantum computing

ä f : {0, 1}n→ {0, 1} would classically need 2n−1 + 1 evals.
QC: one

20-3 – quantum2

20-3

The Deutsch-Jozsa algorithm

ä First: f is not injective - so cannot tell x from f(x). It is not
reversible. Make it reversible with a trick

ä Define ’Oracle’:

Uf(|x〉|y〉) := |x〉|y ⊕ f(x)〉
* Note: ⊕ == addition mod 2 == XOR

y f(x)

|x >

| >

U
f

| x >

| y >

-1 Show that Uf ◦ Uf = I (where: ◦ = composition)

ä From above exercise we see that Uf is now reversible (even
though f may not be)

ä Consider Uf as a function of the 2 qubits x and y

-2 Show that when f = f0 then Uf is the identity

-3 Show: when f = f1 then Uf does an XOR on the 2nd qubit

20-4 – quantum2

20-4

-4 When f = fx then Uf does the CNOT operation:

Case f = fx
Control=x, Target=y

|xy〉 |00〉 |01〉 |10〉 |11〉
Uf(|x〉|y〉) |00〉 |01〉 |11〉 |10〉

-5 When f = fx̄ then Uf does the operation:

Case f = fx̄
|xy〉 |00〉 |01〉 |10〉 |11〉

Uf(|x〉|y〉) |01〉 |00〉 |10〉 |11〉
Note: all second bits are flipped from case fx above - therefore:

ä This is a CNOT operation followed by a NOT (X) on 2nd qubit.

-6 Show that for a given f , Uf (a 2 qubit operator) is linear and
that it is unitary. What is its matrix representation for each of the 4
functions f0, f1, fx, fx̄?

ä Deutsch-Jozsa algorithm based on exploiting superposed states

ä Take second qubit as |−〉 = 1√
2

(|0〉 − |1〉) and apply oracle.

20-5 – quantum2

20-5

Uf |x〉|−〉 = Uf |x〉
|0〉 − |1〉√

2

= |x〉|0⊕ f(x)〉 − |1⊕ f(x)〉√
2

= |x〉|f(x)〉 − |f̄(x)〉√
2

= (−1)f(x)|x〉|−〉

ä Known as the phase kick-back trick – value of the function
reflected in phase.

Q: If we observe the first qubit on output: to what operation is
the oracle equivalent for f0, f1, fx, fx̄?

A:
f0 f1 fx fx̄
I −I Z −Z

20-6 – quantum2

20-6

ä One more transform: Exploit the relation HZH = X. Apply
H to x before and after Uf . Let x = |0〉 (top qubit).

DIAGRAM
X H

H
Uf

H ��

ä If f is either f0 or f1 we observe ±|0〉
ä If f is either fx or fx̄ we observe a ±|1〉
Done!

ä Note: The actual final state has the form (prove it)

ψ = ±|f(0)⊕ f(1)〉
[
|0〉−|1〉√

2

]

20-7 – quantum2

20-7

-7 Determine the states
ψ0, · · · , ψ3 (see figure)
after each ‘stage’ y f(x)

H

H

H

Uf

x

y

x

ψ

| 1>

| 0 >

ψ
0 ψ1 ψ2 ψ3

Partial Solution:

1. |ψ0〉 = |01〉
2. |ψ1〉 =

[
|0〉+|1〉√

2

] [
|0〉−|1〉√

2

]
. Write as | x 〉|−〉

3. |ψ2〉 = Uf(|x〉, |−〉) = (−1)f(x)|x〉|−〉
= (−1)f(0)|0〉+(−1)f(1)|1〉√

2
|−〉

If f(0) = f(1)→ same sign ψ2 = ±|+〉|−〉
Otherwise ψ2 = ±|−〉|−〉

4. Apply H to 1st qubit of ψ2:
If f(0) = f(1)→ ψ3 = ±|H+〉|−〉 = ±|0〉 |−〉
Otherwise ψ3 = ±|H−〉|−〉 = ±|1〉|−〉

20-8 – quantum2

20-8

Quantum paralellism

ä In effect the DJ algorithm is able to evaluate f(0) and f(1) at
the same time.

ä Assume same context: f : {0, 1} → {0, 1}. Same oracle U .

-8 Consider the circuit to the
right. Show that the output is

|0, f(0)〉+ |1, f(1)〉 >√
2

y f(x)

|0> + |1>

2
Uf

x

y

x

| 0 >

ψ

ä In effect |Ψ〉 carries infor-
mation about both f(0) and
f(1)!
ä The above circuit is same as:

y f(x)

Uf

x

y

x

ψ

| 0 >

| 0 > H

20-9 – quantum2

20-9

ä Generalization to n+ 1 gates. Function f is now from {0, 1}n
to {0, 1}.

ä Recall the notation seen
earlier: at top we have n qubit
at state |0〉 - each followed by
Hadamard.

y f(x)

H
n

Uf

x

y

x

ψ

| 0 >
n

| 0 >

ä Output state is now:
1√
2n

∑

x

|x〉|f(x)〉

Example: When n = 2 – state x input to Uf is

x =
1

2
[|00〉+ |01〉+ |10〉+ |11〉]

Output:
1
2

[|00, f(00)〉+ |01, f(01)〉+ |10, f(10)〉+ |11, f(11)〉]

20-10 – quantum2

20-10

Cirq codes

Resources:

ä See https://github.com/quantumlib/cirq

ä I found a good documentation in
https://cirq.readthedocs.io/en/stable/

ä Also: the the Cirq workshop bootcamp repository (google search
it)

ä Cirq Provides a toolkit (a ‘framework’) for similating quantum
algorithms.

ä Written in python. Implements all the gates we have seen and
more.

ä The following illustration shows a simple example

20-11 – quantum2

20-11

1 import cirq
2 q0 = cirq.NamedQubit("q0")
3 q1 = cirq.NamedQubit("q1")
4 q2 = cirq.NamedQubit("q2")
5 ops = [cirq.X(q0), cirq.H(q1), cirq.CNOT(q1 , q2), cirq.X(q1),

cirq.CZ(q0,q1)]
6 circuit = cirq.Circuit (*ops)
7 print(circuit)

Output:

20-12 – quantum2

20-12

A longer example showing many of the gates
1 import cirq
2 import numpy as np
3 q0 , q1, q2 = cirq.LineQubit.range (3)
4 ops = [cirq.X(q0),
5 cirq.Y(q1),
6 cirq.Z(q2),
7 cirq.CZ(q0,q1),
8 cirq.CNOT(q1,q2),
9 cirq.H(q0),
10 cirq.T(q1),
11 cirq.S(q2),
12 cirq.CCZ(q0, q1, q2),
13 cirq.SWAP(q0, q1),
14 cirq.CSWAP(q0, q1, q2),
15 cirq.CCX(q0, q1, q2),
16 cirq.ISWAP(q0, q1),
17 cirq.Rx(0.5 * np.pi)(q0),
18 cirq.Ry(.5 * np.pi)(q1),
19 cirq.Rz(0.5 * np.pi)(q2),
20 (cirq.X**0.5)(q0)]
21 print(cirq.Circuit (*ops))
22 print(cirq.unitary(cirq.CNOT))
23 print(cirq.unitary(cirq.CZ))
24

20-13 – quantum2

20-13

Output:

A few commands to loot at:

ä cirq.X(q0) : gate X at q0.

ä cirq.LineQubit.range(p): create a line of qubits .. or

ä cirq.GridQubit.range(p,q) create a grid of qubits ..

ä print(cirq.Circuit(*ops)) prints circuit

20-14 – quantum2

20-14

Quantum Fourier Transform

ä QFT is at the core of the Shor algorithm

ä Main idea of QFT: Exploit product decomposition. Recall:

DFT
x = [x0, x1, · · · , xN−1]

T is
transformed to y with:

yk =
1√
N

N−1∑

j=0

xje
2iπjk/N

Therefore: |j〉 −→ 1√
N

∑N−1
j=0 e

2iπjk/N |k〉 (∗)

ä Suppose that N = 2n. Write any k in its binary representation:

k = k12
n−1 + k22

n−2 + · · ·+ kn2
0 =

n∑

l=1

kl2
n−l

20-15 – quantum2

20-15

Drop the scaling term 1√
N

in (*) and set that N = 2n. Then:

2n−1∑

k=0

e2iπjk/2n |k〉 =

2n−1∑

k=0

e2iπj
∑n

l=1 kl2
−l|k1...kn〉

=

1∑

k1=0

1∑

k2=0

· · ·
1∑

kn=0

n⊗

l=1

e2iπjkl2
−l|kl〉

=

n⊗

l=1




1∑

kl=0

e2iπjkl2
−l|kl〉




=

n⊗

l=1

[
|0〉+ e2iπj2−l|1〉

]

20-16 – quantum2

20-16

ä Write j =
∑n

m=1 jm2n−m. Since e2iπ×integer = 1 then

e2iπj2−l = e2iπ
∑n

m=1 jm2n−m2−l = e2iπ
∑n

m=1 jm2n−l−m

= e2iπ
∑n

m=n−l+1 jm2n−l−m

= e2iπ0.jn−l+1jn−l+2···jn

ä In the end:

1

2n/2

2n−1∑

k=0

e2iπjk/2n |k〉 =

(|0〉+ e2iπ0.jn|1〉) (|0〉+ e2iπ0.jn−1jn|1〉) · · · (|0〉+ e2iπ0.j1j2...jn|1〉)

2n/2

Let Rk =

(
1 0

0 e2iπ/2k

)

20-17

ä Here is a diagram for a 4-qubit QFT

|j1〉 H R2 R4 R8
|0〉+ e2iπ0.j1j2j3j4|1〉

|j2〉 H R2 R4
|0〉+ e2iπ0.j2j3j4|1〉

|j3〉 H R2

|j4〉 H

|0〉+ e2iπ0.j3j4|1〉

•

•

•

•

• • |0〉+ e2iπ0.j4|1〉

ä O(n2) gates needed for N = 2n -transform.

ä Classically: need O(N log(N)) = n× 2n operations.

20-18 – quantum2

20-18

Concluding notes

L. K.
Glover

O
n

th
e

fu
tu

re
of

Q
C

:

Will quantum computers ever grow into their software?
How long will it take them to blossom into the powerful
calculating engines that theory predicts they could be?
I would not dare to guess, but I advise all would-be
forecasters to remember these words, from a discussion
of the Electronic Numerical Integrator and Calculator
(ENIAC) in the March 1949 issue of Popular Mechanics:
Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future
may have only 1,000 vacuum tubes and weigh only 1.5
tons.

20-19 – quantum2

20-19

