
PARALLEL COMPUTING PLATFORMS,

PIPELINING, VECTOR COMPUTING

• Terminology and Flynn’s taxonomy

• The PRAM model

• Pipelining

• Vector computers, vector processing (AVX, etc)

• Superscalar processing; VLIW

2-1

Flynn’s Taxonomy of parallel computers

ä Distinguishes architectures by
the way processors execute their
instructions on the data.

s
in

g
le

m
u

lt
ip

le

single multiple

SISD SIMD

MISD MIMD

In
s

tr
u

c
ti

o
n

s
 s

tr
e

a
m

s

Data streams

Four categories :

1. Single Instruction stream Single Data stream (SISD)

2. Single Instruction stream Multiple Data stream (SIMD)

3. Multiple Instruction stream Single Data stream (MISD)

4. Multiple Instruction stream Multiple Data stream (MIMD)

2-2 – arch

2-2

SISD Architecture This is the standard von Neuman organization

MISD Architecture Same data simultaneously exploited by several
processors or computing units that operate on it. Pipelined proces-
sors, systolic arrays, ...,

SIMD Architecture
Same instruction is executed si-
multaneously on different “data
streams”. Single Control Unit (CU)
dispatches a single stream of instruc-
tions.
ä Includes pipelined vector com-
puters + many classical machines
(e.g., ILLIAC IV in the 60s, the CM2
in early 90s)

CU Processing Elements

Data streams from memory

Data streams to memory

2-3 – arch

2-3

MIMD Architecture MIMD machines simultaneously execute dif-
ferent instructions on different data streams.

ä Processing elements have their own control units - but coordinate
computational effort with the other processors.

ä MIMD computers further classified in two important subcate-
gories

• Shared memory models : processors have very little local or
‘private’ memory; they exchange data and co-operate by accessing
a global shared memory.

• Distributed memory models : No shared global address space.
Each processor has its own local memory. Interconnections be-
tween processors allow exchange of data and control information.

2-4

Typical SIMD (left) and MIMD (right) organizations.

I
n

te
r
c
o
n

n
e
c
ti

o
n

 N
e
tw

o
r
k

I
n

te
r
c
o
n

n
e
c
ti

o
n

 N
e
tw

o
r
k

CPU +

Control Unit

CPU +

Control Unit

CPU +

Control Unit

CPU +

Control Unit

CPU

CPU

CPU

CPU

CPU
Global

Control

Unit

2-5 – arch

2-5

The PRAM model

ä PRAM = Parallel Random Access Memory. Model used mostly
for theory.

ä Extends the Von-Neumann model.

ä P processors having access to a large memory

ä Question: How to man-
age conflicts? [2 processors
wanting to read & write to
same location]
ä Four different models
used

PE1 .PE2 PEp..

Shared Global Memory

Interconnection network

2-6 – arch

2-6

EREW - Exclusive Read, Exclusive Write

CREW - Concurrent Read, Exclusive Write

ERCW - Exclusive Read, Concurrent Write

CRCW - Concurrent Read, Concurrent Write

Concurrent reads are harmless. Concurrent writes require arbitration.
Four methods:

Common Writes successful if data is same
Arbitrary One PE only succeeds in the write
Priority PEs prioritized. Highest priority PE writes
Combine e.g., add results then write
results

2-7 – arch

2-7

Architecture options for exploiting parallelism

1. Multiple functional units ∗,+, ..
2. Pipelining, Superscalar pipelines

3. Vector processing

4. Multiple Vector pipelines

5. Multiprocessing

6. Distributed computing

2-8 – arch

2-8

Pipelining

Idea of the assembly line. Assume an operation (e.g., FP adder)
takes s stages to complete. Then we pass the operands through
the s stages instead of waiting for all stages to be complete for
first two operands.

Example: an arithmetic adder:

1 Unpack operands
2 Compare exponents
3 Align significands

4 Add fractions;
5 Normalize fraction
6 Pack operands

ä To operate on a stream of data (a pair of vectors), no need to
wait for all the stages to complete on each pair. Instead, “pipeline”
the stream through the 6 stages.

2-9 – arch

2-9

-

-
s1 -

-
s2 -

-
s3 -

-
s4 -

-
s5 -

-
s6 -c∗a∗

b∗

ä Assume that each stage takes one clock period. After s clocks,
the pipe is filled, i.e., all stages are active. Then an operation is
produced at each clock cycle.

ä If each stage takes time τ , then, operation with n numbers will
take

sτ + (n− 1)τ = (n+ s− 1)τ seconds

Instead of

nsτ seconds

ä Gain a factor of
ns

(n+s−1)
2-10 – arch

2-10

Vector pipelines

ä Simplest example: s1 = s2 + s3

Machine operations (informal assembler notation)

cycles
load s2 --> R1 1 % R1-R3 = registers
load s3 --> R2 1
add R1 + R2 --> R3 6 % (6 stages)
store R3 --> s1 1

ä 9 cycles to complete one operation.

2-11 – arch

2-11

ä On a sequential computer (scalar mode) the loop

do i=1,64
s1(i)=s2(i)+s3(i)

enddo

would take 64*9=576 cycles + loop overhead.

ä If operations are pipelined: one operation delivered at each cycle
once pipe is filled. Total time: 63 + 9 cycles. (!)

ä Vector computers: (1) exploit ideas of pipelining at all levels
(loads, store, vector adds, ...) to reduce cost and (2) provide “vector”
instructions

2-12 – arch

2-12

-1 Assume that r is the ratio of the peak vector speed to peak
scalar speed (the ‘speed-up’) and that the fraction of vector to scalar
operations in your calculation is f (if 5% of operations are purely
scalar then f = 0.95). Show that the speed-up for your calculation
will be

S(f) =
r

(1− f) ∗ r + f

What speed up do you get when vector processing is very fast (r =
∞) and f = 0.9

2-13 – arch

2-13

Vector computers - continued

ä Hardware component: vector registers

ä Vector registers are used in vector instructions.

Example: The loop a(1:64)=b(1:64)+c(1:64)

May be translated as:

vload b(1), 64, 1 --> V1 % Vector load to V1
vload c(1), 64, 1 --> V2
vadd V1 + V2 --> V3 % Vector addition
vstore a(1), 64, 1 <-- V3

ä b(1) = start address, “64”=vector length, “1” = stride

2-14 – arch

2-14

Chaining

Take the result of one pipe (e.g. a multiplier) as an input to another
pipe (e.g. adder).

t(1:64)=z(1:64)+x(1:64)*y(1:64)

Y

X

Z

X*Y

X*Y
vmul

vadd
Store

ä Main assembly instructions: vmul V1*V2→ V3
vadd V3+V4→ V5

2-15 – arch

2-15

Vector Extensions: SSE, SSE2, ..., AVX

ä SSE = Streaming SIMD Extensions

ä Modern versions of vector instructions added to common chips

ä History: MMX→ SSE→ SSE2→ AVX→ AVX2→ AVX512

ä Additions to the x86 instruction set architectures for Intel and
AMD processors.

ä Look at the X86 instruction set

ä SSE registers: 4 FP32 packed into a single 128b register

ä 8 registers xmm0, xmm1, ..., xmm7

ä SSE2: xmm registers can be 4 × FP32D or 2 × FP64, or 4 ×
INT32 , or 8 × INT16 , or 16 × 1 Char(1B)

ä Similarly for 256 long registers

2-16 – arch

2-16

Example: Suppose we want to add FP32 vectors of 4 com-
ponents v1.a, v1.b, v1.c, v1.d and v2.a, v2.b, v2.c, v2.d Nor-
mally we would have 3 FP32 adds to get the result

w.a = v1.a+ v2.a
w.b = v1.b+ v2.b
w.c = v1.c+ v2.c
w.d = v1.d+ v2.d

With SSE:

movaps xmm0 [v1] ; % move vector v1 to xmm0
addps xmm0, [v2] ; % add into xmm0
movaps [w], xmm0 ; % move to [w]

2-17 – arch

2-17

AVX

ä AVX augments the “Streaming SIMD extensions” (SSE) intro-
duced in ’99 with Pentium III.

ä Started with the ‘Sandy-bridge’ Family from Intel in 2011 followed
by AMD.

ä Borrowed from vector processing by adding vector instruction sets

AVX2
AVX introduced in 2008 (Intel) - modified from legacy SSE
and SSE2 (circa 2000)

ä All Intel Processors in the category core i3/i5/i7 support SSE2/AVX.
Also AMD Zen/Zen2-based processors

2-18 – arch

2-18

ä AVX Uses 16 registers (of
2 Bytes each) to perform SIMD
computations on data
ä The 16 registers can hold: 8
Sing. Prec. (32b each)
ä or 4 Doub. Prec. (64b each)

FP64

F
P

3
2

F
P

3
2

F
P

3
2

F
P

3
2

F
P

3
2

F
P

3
2

F
P

3
2

F
P

3
2

FP64 FP64 FP64

ä Instructions can perform FP operation (+,*,/,...) on data in
registers in parallel.

Most modern processors combine some form of vector processing
(multiple data) with superscalar processing (multiple instructions)

ä Discussed next

2-19 – arch

2-19

Superscalar processors

ä An m-way superscalar processor can issue m instructions per
cycle. Parallel execution of instructions is scheduled at run time
(hardware). Note: m is typically small (2 or 3).

ä “Instruction level parallelism” – different from pipelining – exe-
cutes m instructions in parallel.

ä Typical execution in a 3-way superscalar processor

ifetch
decode

execute
write back

4321 5 6 7 8

time
cycles0

2-20 – arch

2-20

Superscalar processors: An example

The assembly code:

1. load R1, @1000
2. load R2, @1008
3. add R1, @1004

4. add R2, @100C
5. add R1, R2
6. store R1, @2000

will be executed as :

IF
IF

IF
IF

IF
IF

ID
ID

ID
ID

ID
ID

OF
OF

OF
OF

E
E

E

IF

ID

OF

E

WB

ifetch

decode

op. fetch

execute

write back

no actionNA

4321 5 6 7 8

time
cycles0

NA
NA WB

2-21 – arch

2-21

ä In-order execution: Order of instructions is not changed - This
leads to limited parallelism

ä Out-of-order execution: instructions are rearranged (i.e., executed
in an order different from initial order) to increase parallelism.

Example: The code:

1. load R1, @1000
2. add R1, @1004
3. load R2, @1008

4. add R2, @100C
5. add R1, R2
6. store R1, @2000

Has a problem: (2) depends on (1)

It can be rearranged by swapping (2) and (3) [Gives earlier code
fragment]

2-22 – arch

2-22

VLIW and the Multiflow experience

ä Above idea is a reduced version of ’trace scheduling’ –

ä A compiler technique based on unraveling parallelism ‘automati-
cally’

ä Main idea: used ‘Very Long Instruction Words’ [VLIW]. Idea of
’speculation’ is exploited.

ä ’Multiflow, Inc’ commercialized such computers in mid-1980s.

ä Had a great impact on design –

-2 Read more about the Multiflow :
http://en.wikipedia.org/wiki/Multiflow

2-23 – arch

2-23

History: A few milestones

Name (year) PEs, topology Prog. model
ILLIAC IV (’72) 64, mesh SIMD
DAP (’74) 4096, mesh SIMD
MPP (’80) 16384, h-cube SIMD
CM-1 (’83) 4096, h-cube SIMD
CM-2 (’85) 16384, h-cube SIMD
BBN Butterfly (’81) 256, Butterfly MIMD
Ncube (’85) 1024, h-cube MIMD
IPSC-1 (’85) 128, hypercube MIMD
Meiko (’85) 40, reconf. MIMD
Sequent Symmetry (’86) 30, bus Shared Mem
Encore multimax (’87) 11, bus Shared Mem

2-24 – machines

2-24

Name (year) PEs, topology Prog. Model
iPSC/2 (’87) 256, h-cube MIMD
CRAY Y-MP (’88) 16, multiport sh mem
Ultracomputer (’88) 4096, Omega MIMD
Cedar (’89) 32, Multistage MIMD
iPSC/860 (’90) 512 h-cube MIMD
CM-5 (’91) 1024 Fat-Tree MIMD
Paragon XP (’91) 4096 2-D mesh MIMD
Cray T3D-T3E (’96) 1024, 3-D torus MIMD
IBM SP series (’97 –) 8192, Switch MIMD
SGI Origin/2000 ser (’98) h-cube + crossbar MIMD
SGI Origin/Altix ser (’03) h-cube+crossbar MIMD
IBM Blue Gene (’04) 100,000+, 3D mesh+tree MIMD
CRAY XT3 (’04) 10,000+, 3D torus MIMD

2-25 – machines

2-25

Recent top 500s

Year Name PFlop/s cores interconne.
2008n IBM Roadrunner 1.105 129,600 Voltaire Infiniband
2009 Cray Jaguar XT5 1.759 298,592 Cray Gemini
2010 Tianhe-IA 2.566 186,368 Proprietary
2011 Fujitsu K computer 10.51 705,024 Custom
2012j IBM Sequoia 16.32 1,572,864 Custom
2012n Cray Titan 17.59 560,640 Cray Gemini
2013 NUDT Tianhe-2 33.86 4,981,760 TH Express-2
2016 Sunway TaihuLight 93.01 10,649,600 Sunway
2018j IBM Summit 122.3 2,282,544 Mellanox Infiniband
2020n Figaka (Riken) 442.0 7,630,848 Tofu interconnect D

2-26 – machines

2-26

How about the Minnesota Supercomputer Institute?

ä MSI was once in the top 10 of the top 500 (1996?)

ä No longer in top 500 .

Two main machines –

Mesabi Cluster https://www.msi.umn.edu/content/mesabi

ä HP Linux cluster with 741 nodes – Different types of nodes.

• Total of 17,784 compute cores Intel Haswell E5-2680v3 processors

• 616 Nodes have 64GB of RAM, 24 nodes have 256 GB, and 16
nodes have 1 TB of RAM each

• 40 nodes equipped with NVIDIA K20X GPUs [peak of 2.63 TFlop/s
each] 128GB RAM each

• 32 Nodes have 480 GB SSD memory (each) for High Perf. I/O

2-27 – machines

2-27

Mangi https://www.msi.umn.edu/mangi

Recently added as a replacement to Ithasca [Jan 2020]

* HPC cluster with 128 AMD ’Rome’ compute nodes (EPYC family,
Zen-2 arch.)

* Total of 20,992 compute cores

* 12 of the nodes include 2-way Nvidia V100 GPUs + 2 nodes with
4 way GPUs, and one with 8-way GPU.

* Memory: 144 nodes × 256 GB; 10 nodes × 512 GB; 10 nodes ×
2TB; or RAM.

* Interconnect: HDR100 (100 Gb/second) infiniband network

Note on Terminology: Infiniband is a standard [like ‘ethernet’] for HPC with high bandwidth and

low latency. The term is also used to designate a type of network. Competing networks: Mellanox,

Fibre Chanel. HDR stands for High-DataRate. There is also: Enhance Data Rate (EDR), FDR, all

different speeds in IB technology.

2-28 – machines

2-28

