
MEMORY ORGANIZATION

• Memory and cache performance issues

• Hierarchical memories

• Latency, bandwidth, ..

• Caches

• Examples

3-1

Terminology: Symmetric Multiprocessing (SMP)

Main feature: a global memory that is accessed by p processors
through some interconnection network or high-speed bus

ä Same view, same addressing, of memory by all PEs

Interconnection network

Shared Global Memory

PE1 .PE2 PEp..

3-2 – Mem

3-2

Terminology: UMA / NUMA

UMA : Uniform Memory Access – any memory word can be ac-
cessed in the same amount of time - regardless of location.

NUMA : Non-Uniform Memory Access – time to access a certain
memory word depends on location.

Often NUMA architectures correspond to distributed memory com-
puters with an OS that allows a global address space.

ä This idea adopted in microprocessor chip: “cluster in a box”.
[see example later.]

3-3 – Mem

3-3

Memory and Cache performance issues

ä Main problem: memory speed much smaller than CPU speed.

ä Fast memory is expensive

ä Idea: organize memory hierarchically to exploit “locality of data”

Cache: Small fast memory with very fast access from/to CPU.

3-4 – Mem

3-4

Memory is hierarchical: Remote / External memory (Disk), RAM,
Chache 1, Cache 2, registers

Main Memory

Cache

C P U

BiggerFaster

(Disk)
External memory

ä Data is first searched in cache. If not available (cache miss) it is
moved from main memory to cache.

ä However, a whole “line” is moved from memory in anticipation
for the use of nearby data items..
3-5 – Mem

3-5

ä Memory is often organized in banks (or “modules”)

ä Low order interleaving:

Banks 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
.
.
.

ä Access to items from different banks is simultaneous but access
to same bank causes a “memory-bank conflict”

3-6 – Mem

3-6

ä “High-order inverleaving”: use the high-order bits as the module
address ä Contiguous memory locations assigned to the same bank.

ä Vector computers often use “low-order interleaving”./

3-7 – Mem

3-7

Latency and Bandwidth

ä Access to and from memory works much like other transportation
systems:

Bandwidth

 Latency [reflects temporal
distance − zero byte time]

A B

reflects speed

Bandwidth: Max. number of bytes that can be moved per second.

Latency: Time to access a word from any given bank

3-8 – Mem

3-8

ä Typical curve to tansfer n
words from memory to CPU (no
cache)

ä Stair-like shape because
words are moved as single units.

Number of words

T
im

e
to

 t
ra

n
sf

er

Latency

Slope=1/bandwidth

ä Roughly speaking : Time to transfer n words from memory to
CPU or to cache [when there is one] takes the form

t(n) = η + n−1
β

where η is the latency, and β = Bandwidth.

3-9 – Mem

3-9

Examples

-1 Assume a memory has 16 banks (organized in words of 4 bytes)
and that each bank cycle time is 8, i.e., it takes 8 clock cycles
to access one 4-byte word from the bank. What is the Maximum
memory bandwidth if the clock cycle is 6 nanoseconds?

-2 In the same example as above, assume you need to access a
vector with a stride of 8 (low-order interleaving). What is the actual
bandwidth achieved?

Example: A CPU operates at 1GHz. Latency to DRAM =
100ns (no caches - Assume: can access a block of one word each
100ns) Proc. has 2 *, + units. Executes 4 OPS per cycle. ä CPU
Peak Speed 4 GFlop/s. But doing an inner product of 2 vectors
would give a speed of only 10 MFlop/s.

3-10 – Mem

3-10

Cache

ä Fast, low latency memories (usually small) between processor and
main memory.

ä Main principles exploited:

(1) Data reuse: References are often made to the same memory
location many times, and

(2)Temporal Locality: when accessing a given entry in memory it is
likely that entries next to it will be references soon after

ä Minimum amount of information copied into cache is a “line”. A
line is copied from mem. to cache – with various addressing schemes.

3-11

Two-level memory hierarchy. Shaded area = a line copied to cache
from main memory

CPU

CACHE

MEMORY

3-12 – Mem

3-12

Memory and Cache performance

ä The performance can be degraded dramatically due to

1. Poor cache utilization (frequent cache misses)

2. Memory bank conflicts

Example: Consider the following code segment:
1. for (j = 0; j < n; j + +) {
2. c sum[j] = 0.0;
3. for (i = 0; i < m; i+ +)
4. c sum[j] + = b[i][j];
5. }

ä Computes the column sums of a certain matrix b

ä Recall: In C, matrices are laid row-wise in memory.

3-13 – Mem

3-13

ä Stored as a one-dimensional array :

b[0][0], b[0][1], · · · , b[0][n− 1],

b[1][0], b[1][1], · · · , b[1][n− 1], ...

· · · , b[m− 1][0], b[m− 1][1], · · · , b[m− 1][n− 1]

Problem 1: i loop accesses entries in columns. Corresponds to
accessing every n-th entry in the above one-dimensional array.

ä If for example n = 1024 and the cache line is 16 words then:
cache miss at each instance of the loop.

Problem 2: Strided access to memory can lead to bank conflicts.
For example if, again, n = 1024 and if the memory is organized
in 32 banks (low-order interleaving), then entries 0, 1024, 2048,..
cannot be fetched simultanously.

3-14 – Mem

3-14

ä Rewrite by swapping the i and j to

Rewrite as
1. for (j = 0; j < n; j + +)
2. c sum[j] = 0.0;
3. for (i = 0; i < m; i+ +) {
4. for (j = 0; j < n; j + +)
5. c sum[j] + = b[i][j];
6. }

ä An important ingredient in optimizing code relies on loop reorder-
ing and loop “unrolling” [especially on vector computers.]

3-15 – Mem

3-15

ä Use of loop unrolling:

0. t = 0.0;
1. for (j = 0; j < n; j + +)
2. t+ = x[j];

becomes (for example)

. t = 0.0;

. for (j = 0; j < n; j+ = 4)

. t+ = x[j] + x[j + 1] + x[j + 2] + x[j + 3];

ä Seldom needed these days [compilers do the job]

3-16 – Mem

3-16

How do caches work?

ä Three designs: (1) Fully associative caches (expensive) (2) Direct
mapping caches (simplest, cheapest) and (3) set associative caches
(combine direct mapping with associative memories)

Idea of direct mapping:

ä Address split in 3 pieces: (1) tag, (2) block (or line), and (3)
word.

Address

s bits r bits w bits

TAG WORDLINE

ä Block is located in address ’BLOCK’ of cache (2w words)

ä OFFSET = address of the word within the line [Also known as
WORD]

3-17 – Mem

3-17

ä It suffices to compare the tags of the block and address being
searched to determine if it is in cache. If it is not (cache miss) then
copy the line from memory (slow).

Compare

Miss

Hit

To Main

Memory

Tag WordLine

3-18 – Mem

3-18

Caches of different levels

ä Processors may have several types of cache: level 1, level 2,

ä Up to level 4: Present in Intel microarchitectures of Haswell and
Broadwell. [roughly from 2013 – 2016] – Disappeared with Skylake
which appeared in 2015.

so
ur
ce
:
Ia
n
C
ut
re
ss

in
A
na
nd
te
ch
,
09
/0
1/
20
15

3-19 – Mem

3-19

ä More common: 3 ‘Levels’, L1, L2, and L3.

ä L1 closer to CPU −→ faster

ä The higher the level the larger the cache: e.g., 32 KB to 1MB
for L1. L2: up to ≈ 8MB, and L3: up to ≈ 128MB.

ä L1 is often divided in Instruction cache and Data cache

C
o

r
e

C
o

r
e

C
o

r
e

C
o

r
e

L1 D L1 D

L1 D L1 D

L1 I

Level 2

L1 I

Level 2

L1 I

Level 2

L1 I

Level 2

Level 3

3-20 – Mem

3-20

Example: The IBM Power9

ä IBM roadmap for High-Performance Chips [source: IBM]

• Starting with Power-9 IBM aims at Data-related applications.

3-21 – Mem

3-21

• IBM Power system AC 922 that powers the Summit machine in
Oak-Ridge. Each node: 2× POWER9 SMT4 Monza, with 6×
Nvidia Volta GPUs

so
ur
ce
:
w
w
w
.r
ed
b
oo
ks
.ib
m
.c
om

3-22 – Mem

3-22

• The two POWER9 processors together have 44 cores and 6 at-
tached NVIDIA Tesla V100.

• L1 Data cache = 32KB [128B/line], 8 way - 8 Banks L2 cache can
supply 64B/ clock cycle. L1 Instr. Cache: 32KB [2x64B sectors]

• 512 KB of L2 cache per core,

• Up to 120 MB of L3 cache per chip

•Optional: Level-4 cache via Centaur chip

• Up to four threads per core

• 120 GBps memory bandwidth per chip

• 64 GBps SMP interconnect between POWER9 chips

• Clock rate: 4GHz

ä IBM is now rolling-out the new Power 10. Doubled up functional
units, 2MB L2 cache, 18 B. Transistors (7nm technology!),

See read more on this site

3-23 – Mem

3-23

DDR4 memory:

• Sixteen dual inline memory module (DIMM) memory slots

•Maximum of 1024 GB DDR4 system memory (8335-GTG)

• Improved clock from 1333 MHz to 2666 MHz for reduced latency

• Lots of Details in
https://www.redbooks.ibm.com/ redpapers/pdfs/ redp5472.pdf

and [for a slightly different Power9 chip]
https://www.7-cpu.com/cpu/Power9.html

3-24 – Mem

3-24

Example: The‘phixx’ cluster in cselabs

-3 To do in class: Look at the ‘phixx’ cluster – Analyze one
node: “phi01.cselabs.umn.edu” – Number of sockets, cores, CPUs,
addressable CPU (’NUMA nodes’), cache sizes, etc.

ä Before class: explore the unix command lscpu and try to decipher
the file /proc/cpuinfo

-4 Remember Mangi and its Rome nodes? visit this site

3-25 – Mem

3-25

