An introduction to

The openMP programming environment

Introduction : the openMP model
Basic syntax
A few examples

See also the following site for many resources:

http://openmp.org

4-1

http://openmp.org

Threads and the openMP model

» openMP implements the Fork-Join model %Wam
Tasks

» Makes it easy to parallelize loops or @

parallel sections of codes
Threads

Note: A thread is a stream of instructions
that can be executed in parallel.

Pros: Arguably the simplest approach to parallel programming.

Cons: Limited to SMPs [Shared memory computers]

4-2 — openMP

4-2

The openMP approach

» Use C (or C++, Fortran, ...) and add directives / pragmas to:

* Indicate parallel loops,

* Parallel regions of code, ..
* .. and more

» Plus a few library routines [e.g., OMP_GET _THREAD NUM(Q) |
» Intrinsically designed for Shared Memory SMP machines.

» Portable — supported by all High Performance computer vendors:
http://openmp.org
» ... and implemented in GNU compilers (gcc,..).

4-3

http://openmp.org

» Directives/ pragmas:

In C: ##pragma omp ... directives
In Fortran: = I$OMP ... directives

#pragma omp parallel int 1;

#pragma omp parallel for
C for (i=0; i<n; i++) {
// structured block yli] += x[i];

. ;

» These notes will illustrate only a few directives
See http://openmp.org/ for additional details:
e Reference guide for a quick overview

e Specifications [a pdf file] for details

4-4 — openMP

4-4

http://openmp.org/

Basic functions

omp_get_thread_num() - get thread number
omp_set_num_threads (nthreads) - set # of threads

omp_get_num_threads ()

- get number of threads used

Example:

#include <omp.h>
int
int

#
{

omp_get_thread_num() ;
main () {
pragma omp parallel

printf ("Thread number : %d\n",
omp_get_thread_num()) ;

45

— openMP

4-5

1. Compile with gcc -o test.ex -fopenmp test.c

2. Set number of threads with environment variable:

setenv OMP_NUM THREADS 4

3.

46

Run

./test.
Thread
Thread
Thread
Thread

eX

number:
number:
number:
number :

= NN WO

— openMP

4-6

Hello World in openMP: pragma parallel

g

47

Nej 0] -~ D t = W [\ =

10
11
1
13

[\

Compile and run this other version of the previous example

#include <stdio.h>
#include <stdlib.h>
int main () {
int 1;
int omp_get_thread_num() ;
printf ("Entering parallel threads:
#pragma omp parallel

i = omp_get_thread_num() ;
printf (" -->> Hello from thread

+
printf (" <<-- QOut of threads \n");

+

\nll);

%d

\nn ,1)’

— openMP

4-7

Hello World in openMP: pragma parallel for

48

ot =~ w [\ =

w0 =

9
10
11
1
13

[N}

#include <stdio.h>
#include <stdlib.h>
int main () A
int 1, p;
int omp_get_thread_num() ;
printf (" Entering parallel threads:
#pragma omp parallel for
for (i=0;i<12; i++) {
p = omp_get_thread_num();
printf (" -->> Hello from thread
¥
printf (" <<-- QOut of threads \n");
+

\nll) ;

%d

\n”,p);

— openMP

4-8

#19

compile and run:

gcc —fopenmp omp hello.c

» (Can set the number of threads from environment variable...

>

setenv (OMP NUM THREADS 4

. or in the code with the command
omp_set_num_threads(nthreads)

» This freezes the number of threads [takes precedence over envi-

ronment variable OMP _NUM THREADS]

#13

49

What is the difference between the two examples?

— openMP

4-9

Scoping of variables

» Variables can be shared among threads as in

#pragma omp parallel shared(varl, var2,

)

» Beware of racing between variables.. [no guaranteed order of

modifications]

#ny

variable? See situation in following example.

Program race.c:

4-10

What can happen if several threads write to the same shared

#define N_MAX 10000

int main() {

int 1;

double fx, fsum=0.0;
#pragma omp parallel for

for (i = 1; i <= N_MAX;
fx = (double)i ;
fsum += £fx;

}

printf ("-- sum %f \n",

+

i++) {

fsum) ;

— openMP

4-10

Private variables

Variables can be private — local copies of variables made for each
thread — Note: when copies are made they are *not* initialized

#pragma omp private(varl, var2, ...)

» (Can set default for scoping of variable by

#pragma omp default (DEF)
where DEF == one of private, shared, or none.

» |f no default is set, and there is no explicit clause for scoping,
variables are assumed to be shared

4-11 — openMP

Example: | Dot-Product

// nt =

omp_set_num_threads (nt);
m = n/nt;
#pragma omp parallel for private(t,
for (it = 0; it < nt; it++) {

11l = 1it*m;

12 = 11+m;

if (i2 > n) i2 = n;

t = 0.0;

for (1 = i1; i <

t +=x[il*yl[i];
tt[it] = t;

i2; i++)

ot

= 0.0;
for (it = 0; it< nt;
t += tt[it];

it++)

threads
// assumes n divisible by nt (!)

i1, i2, i)

4-12

— openMP

4-12

Critical sections

» Solutions to race conditions: critical sections which permit a
code fragment to be executed by one thread only

#pragma omp critical [name]

{
)

» Go back to program race.c seen earlier..

. structured block ...

Here is how it can be corrected..

a) First declare fx as private..

b) Then summation should be critical. [loss of parallelism]

4-13 — openMP

4-13

Program race_cor.c:

#define N_MAX 10000
int main (){
int 1;
double fx, fsum;
#pragma omp parallel for private (fx)
for (i = 1; i <= N_MAX; i++) {
fx = (double)i ;
#pragma omp critical
fsum += fx;
+

printf ("-- sum %f \n", fsum);

>

4-14

Better solution: Reduction operation

— openMP

4-14

Reduction operations

ope = +, X,
min, max, ..

» A reduction does a

global operation (e.g. a

sum) on an array down to

one single result. For ex-
n—1

ample a Y ig Xi oOr

~1
a = max,_, Ly, ..

el

Reduction

Clause syntax: |reduction(<op >: variable)

4-15 — openMP

4-15

Example: | Dot product computation seen earlier

omp_set_num_threads (nt) ;

t = 0.0;
#pragma omp parallel for reduction(+:t)
for (i = 0; i<mn; i++)

t +=x[ilx*yl[i];

» Private copy of £ (in clause) is created for each thread.

» At the end of reduction, reduction operation + (in clause) is

applied to private variable ¢ (in clause) —

» Result of this reduction written to ‘master’ thread (shared vari-

able) ¢

4-16

— openMP

4-16

Sections

#pragma omp sections

» Each section executed
by one thread

» (Cannot branch into and
out of block of sections

4-17

// section 1
#pragma omp
{
block

by
// section 2
#pragma omp
{
block

+
.

— openMP

4-17

Schedule clauses

» Consider the example

#pragma omp parallel for
for (i=0; i<n; i++) {

/*¥--- cost of function varies
a lot with i x/
x[i] = some_function (i) ;
+

Result: poor load balancing. Solution schedule work dynamically.

schedule (type [,chunk])

type is one of static, dynamic,guided or runtime

4-18

— openMP

4-18

runtime = set by an environment variable

setenv OMP SCHEDULE ¢ ‘type,chunk’’ command.

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* cost of function varies a lot with i =*x/
x[i] = some_function(i);
t

4-19 — openMP

4-19

A few runtime functions

» omp get num threads () returns current number of threads

Note: this is always one in a sequential section.
» omp_set num threads (int) setsnumber of threadsin code

2 other methods for this: environment variable (seen before), and
clause [#pragma omp parallel num threads(3)]

» omp get num procs () returns current number of processors
available

4-20

