
An introduction to

The CUDA programming environment

• Introduction : the rise of GPUs

• NVIDIA GPUS and CUDA

• Basic syntax

• Memory organization

• Examples

5-1

GPUs and the CUDA environment

ä GPUs [Graphics Processing Units] are very powerful co-processors
for graphics.

ä Idea: why not use them for numerical computing?

ä GPUs are present in every workstation - for graphics processing

-1 Find out what graphics card you have on your desktop computer
or laptop..

ä Characteristics:

–large data arrays, streaming data

–fine-grain SIMD computations

–single precision floating point computation

5-2 – cuda

5-2

ä Difficulty: software.

ä Solution: CUDA

ä CUDA = Compute Unified Device Architecture

ä Introduced in 2006 for NVIDIA GPUs

ä Idea of attached processor [or co-processor]– Not new [e.g. FPS
AP-120B ‘array processor’ unveiled in 1981]

Terminology

ä GPGPU : General purpose GPU

ä GPU-accelerated computing: use GPUs along a CPU to speed-up
computing

5-3 – cuda

5-3

GPUs and the CUDA environment

ä Currently a very popular approach to: inexpensive supercomput-
ing

ä See a series of articles in 2008 - when this whole thing started:
CUDA - supercomputing for the masses by Rob Farber in ‘Dr. Dobbs’

ä You can buy a Teraflop peak power for around $1,500.

ä Amazingly this price has remained ∼ the same – Difference: you
get more from one GPU Example Tesla Products

Megatrend: GPU Performance being tuned for Deep Learning (sin-
gle precison ‘tensor-flops’, vs FP64 teraflops).

5-4 – cuda

5-4

GPU model Price FP64 Perf. $ / TFLOPS DL (FP32) Perf. $/ TensFPS

V100 16GB $10,664* 7 TFLOPS $1,523 112 TFLOPS $95.21

32GB $11,458* $1,637 $102.3

P100 (16GB) $ 7,374 4.7 TFLOPS $ 1,569 18.7 TFLOPS $394.33

* Note the huge jump in performance for Deep learning made in
recent generation GPUs (Tesla V100).

*∼ 10 years ago: 1 TFLOPS for approximately $1,350 (Tesla C2050)
[see that Dr. Dobbs article]

5-5 – cuda

5-5

The NVIDIA products

4 families

• Tegra: Mobile and embedded devices (e.g., phones)
• GeForce: Consumer graphics, gaming
• Quadro: High-performance visualization
• Tesla: High performance computing (Tesla M2050)

5-6 – cuda

5-6

Example: The‘cudaxx’ cluster in cselabs

-2 To do in class: Look at the ‘cudaxx’ cluster – Analyze one node:
“cuda01.cselabs.umn.edu” –

ä What GPU?

ä Use the command lspci : Explore the unix command lspci before
class. Look for “GPU” or “Graphics”

ä PCI: Peripheral Component Interconnet [bus that attaches pe-
ripheral devices, e.g., USB, audio, RAID, Ethernet, ...]

ä Another (unix) command: nvidia-smi (Nvidia System Manage-
ment Interface) – For nvidia GPUs only

-3 Read about compute capability in Nvidia Documentation. What
is it for the nodes of the cudaxx cluster?

https://www.techpowerup.com/gpu-specs/geforce-gtx-470.c267

5-7 – cuda

5-7

The new: The‘veggie’ cluster in cselabs

ä Recall: each node has
80 cores
ä + Equipped with
NVIDIA Tesla T4

For details see:
Tesla T4 @ NVIDIA

5-8 – cuda

5-8

CUDA Cores 2560
NVIDIA Turing Tensor Cores 320
Memory 16 GB GDDR6 w. ECC
Memory Interface 256-bit
Memory Bandwidth 320 GB/s
Single Precision Floating Point Perf. 8.1 TFLOPS

(w. GPU Boost Clock)
Mixed Precision (FP16 / FP32) 65 TFLOPS
INT8-Precision 130 TOPS
INT4-Precision 260 TOPS
System Interface PCI-Express 3.0 x16
Max. Power Consumption 70 Watt

5-9 – cuda

5-9

Example: NVIDIA GeForce RTX 2080 Ti

• CUDA cores: 4,352
• Base Clock speed: 1350MHz
• Boosted Clock speed: 1545MHz
• FP32 peak speak: 13.44 TFlops

• RTX-OPS : 76T

• Memory capacity: 11GB GDDR6

• Memory bandwidth: 616 GB/sec

• Memory speed: 14 Gbps

• Memory interface width: 352-bit

• Memory bandwidth: 616GBps
See Comparisons

5-10 – cuda

5-10

CUDA environment: Device and Host

ä Host processor (CPU) and Device (GPU)

ä Model built around many threads executed on the device

SIMT: Single Instuction Multiple Threads

ä A Kernel == a piece of code executed on the device

ä Each kernel is run in a thread. Blocks of threads are executed on
a Streaming Multiprocessor (SM). Details later.

ä Idea: generate many threads (in the form of an SIMT code)
which will be run on the GPU

ä Host code may be C, C++, fortran90, ..

ä Kernels are in C with CUDA syntax extensions

5-11 – cuda

5-11

The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...)

G

P

 U

C P U

5-12 – cuda

5-12

Threads, Warps, Blocks, and Grids

ä A group of 32 Threads is a Warp

ä Warps grouped into thread Blocks

ä Blocks have ≤ 1, 024 threads

ä Thread blocks are grouped into grids.

Thread→ Block of Threads→ Grid of Blocks

ä Lots of flexibility in selecting block/grid shapes and dimensions

ä Documentation

5-13 – cuda

5-13

5-14 – cuda

5-14

ä Blocks may be 1-D, 2-D, or 3-D,

ä Grids can also be 1-D, 2-D, or 3-D

ä Related kernel variables:

Grid: gridDim, blockIdx, Block: blockDim, threadIdx

blockIdx, threadIdx are 3-Dimensional - can invoke

blockIdx.x, blockIdx.y, blockIdx.z

and:

threadIdx.x, threadIdx.y, threadIdx.z

5-15 – cuda

5-15

Function Type Qualifiers

device : declares a function which executes on device. [Callable
from the device only.]

global declares a kernel function - which is Executed on device,
Callable from host only.

host declares a host function [executed on host, callable from
host only]

If no qualifiers → considered host [but can also combine host
and device]

ä There are some restrictions – see docs. For example recursion
not supported on device. ...

5-16 – cuda

5-16

Hello World in Cuda-ish:

#include <stdio.h>
__global__ void helloFromGPU (){

printf("Hello World -Thread: %d\n",threadIdx.x);
}

int main(void) {
helloFromGPU <<<1,16>>>();
cudaDeviceSynchronize ();
return (0);

}

5-17 – cuda

5-17

Example:

// Kernel definition:
__global__ void vecAdd(float *x,float *y,float *z)
{

int i = threadIdx.x;
z[i] = x[i] + y[i];

}

int main {
...
/* Kernel call: [1 Block of n threads] */
vecAdd <<<1, n>>> (xd, yd, zd);

}

5-18 – cuda

5-18

CUDA environment: Basic syntax

Kernels are called with the <<< >>> construct:

some kernel fun <<< Dg, Db, Ns>>>

- Dg = dimensions of the grid (type dim3)
- Db = dimensions of the block (type dim3)
- Ns = number of bytes shared memory dynamically

allocated / block (type size_t). 0 default

ä What is type dim3? An integer vector type [uint3] - used to
specify dimensions

ä Declare as: dim3 var(dimx, dimy, dimz),

ä ... retrieve components as: var.x, var.y, var.z

ä Unspecified components set to 1
5-19 – cuda

5-19

Built-in variables

ä gridDim is of type dim3. Contains dimension of grid. Similarly
for blockDim

ä Can retrieve block dimensions from

blockDim.x, blockDim.y, blockDim.z

ä blockIdx (type: uint3) contains block ID within grid

ä threadIdx (type: uint3) contains thread index within block.

5-20 – cuda

5-20

Example:

// Kernel definition:

__global__ void MatAdd(float A[N][N]),
float B[N][N],float C[N][N]) {

int i = threadIdx.x ;
int j = threadIdx.y ;
C[i][j] = A[i][j] + B[i][j]};

}
int main() {

...
// Kernel invocation

dim3 dimBlock(N, N)};
MatAdd <<<1, dimBlock >>>(A, B, C);

}

5-21 – cuda

5-21

Example:

__global__ void KernelFun (..)
//host:
dim3 DimGrid (200 ,10); //2000 thread blocks
dim3 DimBlock (4,8,8); //256 threads per block
size_t SharedMemBytes =64;// shared mem. per block
KernelFun <<<DimGrid ,DimBlock ,SharedMemBytes >>>(..)

ä How to get index of a thread?

ä For a 1-D block: Index of a thread & its thread ID are the same

ä For a 2-D block of size (Dx, Dy): thread ID of a thread of index
(x, y) is (x + y*Dx);

ä For 3-D blocks of size (Dx, Dy, Dz): thread ID of a thread of
index (x, y, z) is (x + y*Dx + z*Dx*Dy).

5-22 – cuda

5-22

CUDA environment: Memory Hierarchy

Thread

T
h
re
a
d

T
h
re
a
d

Global

local

Shared Shared

T
h
re
a
d

T
h
re
a
d

T
h
re
a
d

T
h
re
a
d

(0
,0
)

(0
,1
)

(1
,0
)

T
h
re
a
d
(3
,1
)

(1
,1
)

T
h
re
a
d

(2
,1
)

T
h
re
a
d

(2
,0
)

(3
,0
)

T
h
re
a
d

T
h
re
a
d

T
h
re
a
d

T
h
re
a
d

(0
,0
)

(0
,1
)

(1
,0
)

T
h
re
a
d
(3
,1
)

(1
,1
)

T
h
re
a
d

(2
,1
)

T
h
re
a
d

(2
,0
)

(3
,0
)

GRID

BLOCK BLOCK

Threads can access their local memories, shared memroy of their
block, and global memory.

5-23 – cuda

5-23

CUDA environment: Device & Host Memory

ä Device (GPU) memory distinct from that of host.

ä Kernels operate only on device memory

ä Also: Texture memory [called CUDA arrays] –

ä Can allocate device memory with cudaMalloc()

ä Copy from host to device with cudaMemcpy()

ä Can also use cudaMallocPitch(),cudaMalloc3D(),
cudaMemcpy2D(), cudaMemcpy3D(), [see prog. guide]

5-24 – cuda

5-24

CUDA environment: Shared vs. Global Memory

ä By default, the kernel will use global memory

ä However, shared memory is *much* faster and should be used
when possible

ä Declarations:

shared float, int,..

5-25 – cuda

5-25

CUDA documentation, resources

ä Main document from the CUDA main site

ä A PDF document also available [short-cut available in Canvas]

ä General documentation site: Here

ä CUDA sample source codes: Here

5-26 – cuda

5-26

New: openACC

ä Note: Under development.

ä Main Idea: use directives – Very similar to openMP

ä Supported by vendors: there is a chance it will replace CUDA (?)

Importantly: it is now part of gcc.7.xx

Example: : product of two vectors

ä Much simpler than under CUDA [used to be test1.cu]

ä Available and works on Veggie cluster [gcc version 9.xx installed]

ä Docs: See this page → https://gcc.gnu.org/wiki/OpenACC for status
and the openACC homepage→ https://www.openacc.org/

5-27 – cuda

5-27

int main(void){
float *x, *y;

/* -------------------- size of arrays */
const int N = 20;
size_t size = N * sizeof(float);

/* -------------------- Allocate array and set
values */
y = (float *) malloc(size);
x = (float *) malloc(size);
for (int i=0; i<N; i++) {

y[i] = (float) (i+1);
x[i] = (float) (i-1);

}
#pragma acc parallel loop

for (int i=0; i<N; i++)
y[i] = y[i]*x[i];

/* -------------------- print result */
for (int i=0; i<N; i++)

printf("%d %8.2f\n", i, y[i]);
/* -------------------- free memory */

free(x); free(y);
}

5-28 – cuda

5-28

openACC: A few important directives

•#pragma acc parallel Defines a parallel region

•#pragma acc kernels Gives hint to compiler that a block that can
‘kernelized’

•#pragma acc loop defines the type of parallelism in parallel or
kernels region.

•#pragma acc data defines and copies data to / from device

ä On Canvas: full documentation from openACC-standard.ORG

ä Book by Kirk and Hwu (see syllabus): Chapter 19

ä See sample code VecAdd on Canvas for illustration

ä Group assignment: Mat-Add in openACC → with a goal of
getting best performance.

5-29 – cuda

5-29

Run-time functions

int acc_get_num_devices(acc_device_t);
void acc_set_device_type(acc_device_t);
acc_device_t acc_get_device_type(void);
int acc_get_device_num(acc_device_t);
void acc_set_device_num(int , acc_device_t);

...

Some of these can also be set via environment variables

tcsh:
setenv ACC_DEVICE_TYPE NVIDIA

bash:
export ACC_DEVICE_TYPE=NVIDIA

tcsh:
setenv ACC_DEVICE_NUM 1

bash:
export ACC_DEVICE_NUM =1
...

5-30 – cuda

5-30

