An introduction to the Posix Thread API

e General introduction

Creation and termination

e Mutex locks

An example: parallel sum or inner product

6-1

» Mode of programming for shared memory [shared address space
or symmetric multi-processing (SMP)

» Very common — supported by all vendors. Part of unix standard.
»  Low-level
» Helps understand issues with racing, synchronization, etc.
» Here: we will provide basic overview + cover an example.
Pros:  simple approach —

Cons:  Limited to SMPs . Gets complicated for longer codes

6-2 — posix

6-2

The basic commands

See| https://computing.linl.gov/tutorials/pthreads/ |

among many resources for details.

“a thread is defined as an independent stream of
instructions that can be scheduled to run as such
by the operating system.” (source: above)

» |Initially, main() comprises a single thread

»  Programmer can instruct the program to start
threads that execute independently.

»  *However*: you are responsible for coordi-
nating the concurrent accesses/ modifications of
memory variables by different threads

» Once initiated a thread can itself create other
threads T

6-3 — posix

6-3

Thread creation

pthread create (thread,attr,thread fun,arg)
thread is of type pthread t = (unique) idenfifier of thread
attr is of type pthread_attr_t = may be used to set thread attributes.

thread _fun is a function pointer. The thread will execute this function
after creation.

arg is of type *void. This argument is passed to the function thread_fun.
If more than one argument use a struct

6-4 — posix

64




pthread join : blocks calling thread until specified thread ends.
Allows to synchronize

pthread_join (threadid,status)

threadid is of type pthread t = idenfifier of thread

status is of type void*x*.

pthread_join

Work
=3 (Thvead | " [ehrend i |

pthread_join

(Thread | Mo o

6-5 — posix

6-5

Use the attribute for declaring thread as joinable

pthread_attr_t attr; // declare

pthread_attr_init (&attr); // initialize

pthread_attr_setdetachstate (&attr,
PTHREAD _CREATE_JOINABLE); //set

/* at end */

pthread_attr_destroy (&attr); // Free attr

6-6

— posix

6-6

A common maistake

Function to be called by each thread. It will print a message that
contains the thread Id.

void *P_hello(void *arg){
int* thrId = (int*)arg;
printf ("\n--> Hello from thread
number: %d \n",*thrId);
pthread_exit (NULL) ;
+

6-7 — posix

int main(int argc, char *argv[]){

/* Adapted from 11lnl online tutorial. A basic
"hello world" Pthreads program showing thread
creation + termination ----------—-——--—-—----—- */

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#tdefine NUM_THREADS 8
pthread_t thrdNUM_THREADS];
int rc, t;
for (t=0; t<NUM_THREADS;t++){
rc=pthread_create (&thrdt ,NULL,P_hello ,&t);
if (rc){
printf ("ERROR: return code: %d\n",rc);
exit (-1);
¥
+

pthread_exit (NULL) ;

» Pay attention to argument passed to P_hello — last arg. of

pthread create

6-8

— posix

6-8




Discussion

Try Running this code.. What happens?

» Try again several times. Can you explain what happens?

Also: run the driver without the last pthread exit. Can you
explain?

6-9 — posix

6-9

» A thread can finish on its own if parent thread (e.g., main) does
not need it to join at completion.

» |n this case: declare as ‘detached’

[¥-————-——- declare attribute */

pthread_attr_t attr;

A e initialize it */

pthread_attr_init (&attr) ;

A e set as detached */

pthread_attr_setdetachstate(&attr,
PTHREAD_CREATE_DETACHED) ;

[iim=mmmmm=== create thread with attribute x/

pthread_create (threadId, attr, xfun, (void *)arg);

Jrmmmmmmonas instead of join issue detach x/
pthread_detach(threadId) ;
e S do not forget: free attribute */

pthread_attr_destroy (&attr);

Other functions:
pthread attr getdetachstate (attr,detachstate)
pthread attr setdetachstate (attr,detachstate)

6-10 — posix

6-10

Shared variables and mutual exclusion: Mutexes

»  Accessing shared variables requires careful control - if data is
altered by a thread: If several threads modify a shared variable, we
need to make sure only one thread accesses it at a time

» Mechanism: Mutual Exclusion or Mutex.

// Declare as

pthread_mutex_t mutexl ;

// then set as

pthread_mutex_init (mutexl, attr) ;

// or with static initialization

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;

//lock this critical section:

pthread_mutex_lock (mutexl);

// do the work needed in this section

// Nobody else can modify variables in this section
// then unlock

pthread_mutex_unlock (mutex1)

// at completion free:

pthread_mutex_destroy (mutexl)

6-11 — posix

6-11

Example: parallel sum of n numbers

» We want to sum the n numbers of an array a[0:n-1] by dividing
the sums into p subsums which are added in a common location in
memory. Shared variable SUM will contain the final sum.

Each thread computes its subsum

locks the code section that updates SUM
adds subsum to SUM

Unlocks critical section

and exit thread.
I

I I
X X )y
)y )y

6-12 — posix

6-12




generates

compute partial
result is printed.
to complete.
*attributes*.
(allows the

main thread to join
BERAEEH) . oo oo e e T E e e e SO E ST E S DS Es DS eSS */

Main program generates data (a vector) of length n -- then
threads that call the sum_mtx function to
sums and sum them. Upon completion the

Main thread will wait for all threads
This code also illustrates thread
It sets the threads +to be *joinablex*
with the threads it

Declarations

6-13

si#include <pthread.h>

* illustrates the use of mutex variables
* in a threads program to sum n numbers

#include <stdio.h>
#include <stdlib.h>
[lammmesossososossososs Data is passed to
threads through the following struct */
typedef struct {
double *a;
double sum;
int loclen;
int totlen;
} sumstr, *SumPtr;
sumstr SUMST;

— posix

6-13

Function

sum_dat

e w o e

#define NUMTHRDS 8
#define VECLEN 78
pthread_t callThd [NUMTHRDS];
pthread_mutex_t mutexsum;
e e function sum -- activated when
thread is created. */
void *sum_mtx(void *arg){
[irmmessossssssosssosos local variables */
int i, start, end, *blkNum, len ;
double mysum, *x;
blkNum = (int*)arg;
len = SUMST.loclen;
start = (*blkNum)*len;
/* end = start+len > SUMST.totlen ? SUMST.totlen
start+len; */
end = (*blkNum)<NUMTHRDS? start+len:SUMST.totlen;
x = SUMST.a;

[limmmmssssssssssssnsos sum */
mysum = 0;
for (i=start; i<end ; i++)
mysum += x[i];
[rimmmmmmsssnmossss Lock a mutex before updating

the value in the shared struct */
pthread_mutex_lock (&mutexsum);
SUMST .sum += mysum;

[iemmccssssssoosssasoo unlock it now that update is
done*/
pthread_mutex_unlock (&mutexsum);
printf (" -- Local sum in thread %d is %10.2f total
%10.2f\n ",

*blkNum ,mysum, SUMST . sum) ;
printf (" len %d %d %d %5.2f \n",len,start,end,x
[start]) ;
VEEEEE LSl i e done with this thread */
pthread_exit ((void*) 0);

6-14

n

i|int main (int argc, char *argv[]){
2 int i,

3 int *thrNum,
1 double *a;

5 pthread_attr_t attr;

= VECLEN;
*status;

6| /*=—mmmmmmmmmmmm o alloc storage + initialize values */
7 a = (double*) malloc (NUMTHRDS*VECLEN#*sizeof (double)) ;

5/ thrNum = (int*) malloc (NUMTHRDS*sizeof (int));

9 for (i=0; i<n; i++) al[i]l=(double)i;

ll]| /o cocssssococssssososs have thread number in array */

11 for (i=0; i<NUMTHRDS; i++)
12 thrNum[i]l= i;

13 SUMST . totlen n;

14 SUMST . loclen 1+(int) ((n-1)/NUMTHRDS) ;
15 SUMST.a = a;

16 SUMST . sum=0;

17 [ initialize mutex */

18 pthread_mutex_init (§mutexsum, NULL);

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE) ;

pal for (i=0; i<NUMTHRDS;i++) {

2| Kk mmmm e e Each thread works on a different subset */
23  pthread_create(&callThd[i],&attr,sum_mtx,(void *)&thrNum[i]);
24}

2
25| pthread_attr_destroy (&attr);

[rmmmmsssssseosssssoo Join to wait for the other threads */
27| for (1=0; i<NUMTHRDS;i++) {

28 status = &thrNum[i];

2 pthread_join( callThd[i], (void #**)status);

30 printf (" join number %d -- status %d \n",i,*status);

31 b

bH| [iiccsesssssoosssasooss Now print out the sum and cleanup */
331 printf ("Total Sum in main thread = %10.2f \n", SUMST.sum);
311 free (a); free (thrNum);

35 pthread_mutex_destroy(&mutexsum);
36| pthread_exit (NULL) ;
}




