DISTRIBUTED MEMORY COMPUTING

¢ Interconnection networks: Static vs dynamic
e Simple interconnection networks
e Hypercubes, Fat trees, ..

e Routing and Embeddings
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Distributed memory systems

Main feature: No shared global memory. Processors connected
in a certain way and may communicate with each other (message

passing).

< >

Message exchange
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Completely connected and star networks

&X> K

»  Complete network : every processor connected to all others.

»  Star network : one processor connected to all others.
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Linear arrays and Rings

» A Linear Array and a
ring of 8 processors.
These are among the sim-
plest networks
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Two and Three-Dimensional Meshes

A 4 X 4 Multiprocessor Ar-
ray

» Often implemented with wrap-around (can be viewed as a 2-D

mesh of rings) — called a “Torus”

» |IBM Blue-Gene uses a 3-D torus. [Also: Cray T3E from late 90s]
IBM's Bluegene
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http://www-03.ibm.com/systems/deepcomputing/bluegene/

Trees and Fat Trees

» Trees: nodes are linked in a tree structure — hard to program and
“unsymmetric” links.

»  Common remedy: double bandwidth of channels from one level
to the next higher level

Fat- Iree: |

Binary tree with PEs at
the leaves and commu-
nication control proces-
sors at other nodes PP R R P

» Read about Thinking Machine's CM5 Connection Machine
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http://en.wikipedia.org/wiki/Connection_Machine

Hypercubes

»  Consists of 2™ nodes numbered with binary integers (using n
bits)

» A node is connected to every other processor whose binary
number differs from its own by exactly one bit.

» A hypercube of order 0 has one node.

» A hypercube of order n + 1 is e

: /
constructed by taking two hyper- ® \O
cubes of order m and connecting L=

their respective nodes in a one-to-
one manner. o O
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Hypercubes of dimensions 0, 1, 2, and 4
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Hypercubes (Cont.)

g

How can you route a message from node A to node B in a

hypercube? What is the path length?

#n9

#13

#ny

What is the total number of links in a hypercube?
What is the degree (in the sense of graphs) of each node?

What is the diameter (max. distance between any two nodes in

the graph sense) of a hypercube?
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Hypercubes (Cont.)

» The n-cube can be built recursively from lower dimensional
cubes. Take two identical (n — 1)-cubes. Label vertices from 0
to 2”1, Join every pair of vertices from the two cubes having the
same label. Then relabel the nodes of the first cube as 0 A a;
and those of the second by 1 A a; where a;= label of nodes in
(n — 1)—cube and A denotes concatenation

» There are n!12" different ways in which the 2™ nodes of an n-
cube can be labeled [Remember: Adjacent nodes must differ by one

bit]
#15| Prove it [induction]

#16| Prove: There are no cycles of odd length in an n-cube
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Performance measures for interconnection networks

Diameter:  Maximum distance between any two nodes in the net-
work (i.e., in the graph representing the network).

#17] What is the diameter of a 2-D grid? a 3-D grid? a 2-D torus?
a 3-D torus?

Arc connectivity: minimum number of edges to remove to discon-
nect the network graph. Represents the “redondancy” of the network
— i.e., the multiplicity of paths between nodes.

#15) What is the arc connectivity for rings? linear arrays? For trees?
Star networks? Completely connected networks? Hypercubes?
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Bisection Width minimum number of edges to be removed in order
to partition the graph into two equal halves.

#19] What is the Bisection width for rings? linear arrays? Binary
Trees? Star networks? Completely connected networks? Hyper-
cubes?

Bisection Bandwidth: volume of communication allowed between
two equal halves of network — equal to the bandwidth of the links

defined in the Bisection Width

#10] What is the bisection bandwidth of a hypercube (assume
bandwith b for each channel). What is the bisection bandwidth of a
fat tree (assume bandwith b at the leaves - doubling for each higher
level).
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Communication costs (message passing systems)

» A message is sent through several nodes from origin to destina-
tion.

Three distinct costs:

Start-up time. Includes the time to prepare the message, hand-
shaking, ...

Per-hop time. Each time a node is traversed it is handled by

this node and routed (header read, message buffered, and sent out
to next destination)

Per-word transfer time. Reflects the speed (bandwidth) of each

channel. This time is the inverse of the bandwidth (in words/ sec).
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Routing methods

Store-and-forward = Simplest mechanism. Algorithm to send a mes-

sage M of m words from Ay to A; .. to Aj to Aj1q1 ... to
Ali

ALGORITHM : 1. Store and forward send

for (j =0; j <1l; j++)

if (3 +1<1)Send M to Aj;

if ( —1 > 0) Receive packet M from A;_1
End

» let t; = start-up time, t;, = per-hop time, t,, = per-word
transfer time. Then total Cost:

Teomm = ts + 1 * (th m x tw)
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Packet routing Message is packetized into g small packets of size
~ m/q each. Then idea is similar to pipelining.

Algorithm to send a message M split into g packets My, ... M;_;
from Agto A; .. to A;to A;4q ... to Ay

ALGORITHM : 2. Packet routing

for (j =0; j <Ul; j++)
for (2 =0; 1 < q; 1+ +)
if (7 +1 < 1) Send packet M; to A1
if ( —1 > 0) Receive packet M; from A;_1
End
End
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Simplified cost model:

» Neglects overhead due to packetizing, additional header info etc.
» First packet reaches destination in time 5 + [ (— %t + th)

» q — 1 packets left. A new packet arrives each * Ly + tp sec.
So:

m
TcommP:ts_l'l(_*tw_l'th) _|'(q_1) <_*tw+th>
q q

Rewrite as:

TcommP:ts—I_(q‘l_l_l)th_'_(1+I_Tl)*m*tw

7-16 — dist

7-16



Wormhole rou ting Tail Header

»  Packet is cut in L .
small pieces called flow lit M |
control digits or “flits". L Duffer

—y | I

»  Flits transmitted one by one [ “pipelined”]
» Header flit contains destination + routing info for all flints

» Buffering at flint level [not whole packet]. One buffer designated
for the packet.

» Tail flit frees the buffer at end.
» Low latency, memory (buffer) efficient, ..
Cut-through routing

»  Cut-through routing: similar but allocates buffers on a packet
level instead of flit level.
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Graph embeddings

Main question: We have an algorithm which uses data that is laid
out according to a certain graph, for example a 2-D mesh when
solving Partial Differential Equations. How can we map this data
onto the network at hand if we want to optimize communication?

#111] How can we embed a linear array into a 2-D array? Assump-
tions: a m, X m, processor mesh — and a linear array of length

M = Nz X Ny,

»  One Answer: If v; is the i-th vertex (starting at ¢ = 0) then
map v; into i, t, where ¢ = i, * n, + 1, (integer division of % by

#12| s this the best answer?
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Formal definition. G(V, E) mapped into G’(V’, E’) when each
vertex in V' is mapped to one or more vertices in V'’ and if each

edge is mapped to one edge or several edges (a path) of E’.

Cost measures [see text for details]
Max number of edges mapped into an edge in E’

Congestion:

Dilation: Not always possible to map an edge in E exactly into
an edge in E'. An edge in FE is then “replaced” by a path in G’.

Dilation is the maximum length of such paths.

Expansion:  this is simply |V'|/|V|.
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Gray codes and Hypercube mappings

A Hamiltonian circuit in a hypercube represents a sequence of n-
bit binary numbers such that two successive numbers differ by one
bit (exactly) and so that all binary numbers having n bits are

represented. Binary sequences with this property are called Gray
codes.

Binary reflected Gray codes:

» 1-Bit Gray Code: the sequence of the two one-bit numbers 0 and
1, Gy = {0,1}.

» 2-bit Gray Code: take the same sequence and insert a zero in
front of each number, then take the sequence in reverse order and
insert a one in front of each number:

G, = {00,01,11,10}
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» Repeat for 3 bits:

G5 = {000,001,011, 010,110,111, 101, 100}.

» |f G,LR = the sequence obtained from G; by reversing its order,
and 0G; (resp. 1G;) = sequence obtained from G; by prepending
a zero (resp. a one) to each element of the sequence, then

#n13

Gni1 = {0G,, 1GF}

Generate the binary 4-bit reflected Gray code and visualize the

corresponding path in the picture of the 4-dimensional hupercube
seen earlier in this chapter.
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Gray codes and Hypercube mappings

» Linear arrays of length I are easy to map into n-cubes (I < n).

Just use Gray codes.

» A ring of length I can be mapped into the nn-cube when [ is even
and 4 <[ < 2",

»  Mapping a 2-D mesh into an n-cube. Consider for example a
2-dimensional 8 x 4 mesh, To be mapped into into the 5-cube (64
nodes).

» Label of any node A of the 5-cube split in two parts: its first
three bits and its last two bits:

A = b1b2b3 C1Co

»  Observe: When the last two bits are fixed then the resulting 2P?
nodes form a p;-cube (with p; = 3).
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» Likewise, whenever we fix the first three bits we obtain a ps-cube.
The mapping then becomes clear.

» Select a 3-bit Gray code for the x-direction and a 2-bit Gray
code for the y-direction. Vertex (x;, y;) of mesh mapped to node
b1b2b3 c1co where b1bsbs is the 3-bit Gray code for x; while ¢1e5
is the 2-bit Gray code for y;.

10e O O O O O ® o
lle O O O ® @ O o
Ole O o O O O O o
00 ® O o O O o O O

000 001 011 010 110 111 101 100
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Mapping linear arrays into meshes and vice-versa

O

»  Consider the following map-

O

ping of a 16-node linear array into )

» What are the congestion, dila-
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#v14| Consider now the situation of an n X 1 X n 3-D mesh and

a linear array of n° nodes. How would you map the linear array into
the 3-D mesh? What are the congestion, dilation, expansion in this

case?
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#115| Consider the reverse situation: a 2-D mesh mapped into a linear
array (reverse mapping to the one above). What are the congestion,
dilation, expansion of the mapping?

#116| Finally consider the same scenario of mapping a 3-D mesh into
a linear array. What are the congestion, dilation, expansion of the
corresponding mapping?

7-25 — dist

7-25



A® 8 c*
1 2 3 4" 5 6
O e ® D*® EE _F'
7 9
8 9 JLCSNR: N
49 G H |
g 2 3
O ®
® ®
6 5 ___. 4
Dd: E. F‘
7 8 9
® ® ®
G H |
7-26 — dist

7-26



— dist

7-27

7-27



