DISTRIBUTED MEMORY COMPUTING

- Interconnection networks: Static vs dynamic
- Simple interconnection networks
- Hypercubes, Fat trees, ...
- Routing and Embeddings

Distributed memory systems

Main feature: No shared global memory. Processors connected in a certain way and may communicate with each other (message passing).

7-2

7-4

Completely connected and star networks

7-1

- > Complete network : every processor connected to all others.
- > Star network : one processor connected to all others.

Linear arrays and Rings

 A Linear Array and a ring of 8 processors.
 These are among the simplest networks

- dist

- dist

Two and Three-Dimensional Meshes

Often implemented with wrap-around (can be viewed as a 2-D mesh of rings) – called a "Torus"

IBM Blue-Gene uses a 3-D torus. [Also: Cray T3E from late 90s] \succ IBM's Bluegene

7-5

Trees and Fat Trees

Trees: nodes are linked in a tree structure – hard to program and "unsymmetric" links.

> Common remedy: double bandwidth of channels from one level to the next higher level

Fat-Tree:

Binary tree with PEs at the leaves and communication control processors at other nodes

– dist

Read about Thinking Machine's CM5 Connection Machine >

7-6

Hypercubes

ray

Consists of 2^n nodes numbered with binary integers (using nbits)

A node is connected to every other processor whose binary number differs from its own by exactly one bit.

A hypercube of order 0 has one node.

> A hypercube of order n+1 is constructed by taking two hypercubes of order n and connecting their respective nodes in a one-toone manner.

Hypercubes (Cont.)

Bisection Bandwidth: volume of communication allowed between two equal halves of network – equal to the bandwidth of the links defined in the Bisection Width

W₁₀ What is the bisection bandwidth of a hypercube (assume bandwith b for each channel). What is the bisection bandwidth of a fat tree (assume bandwith b at the leaves - doubling for each higher level).

7-12

a 3-D torus?

Arc connectivity: minimum number of edges to remove to discon-

nect the network graph. Represents the "redondancy" of the network

Multimate What is the arc connectivity for rings? linear arrays? For trees?

7-11

Star networks? Completely connected networks? Hypercubes?

- i.e., the multiplicity of paths between nodes.

-

7-12

Hypercubes (Cont.)

Communication costs (message passing systems)

► A message is sent through several nodes from origin to destination.

Three distinct costs:

1. Start-up time. Includes the time to prepare the message, hand-shaking, ...

2. Per-hop time. Each time a node is traversed it is handled by this node and routed (header read, message buffered, and sent out to next destination)

3. Per-word transfer time. Reflects the speed (bandwidth) of each channel. This time is the inverse of the bandwidth (in words/ sec).

7-13

Routing methods

Store-and-forward Simplest mechanism. Algorithm to send a message M of m words from A_0 to A_1 ... to A_j to A_{j+1} ... to A_l :

ALGORITHM : 1. Store and forward send

for (j = 0; j < l; j + +)if $(j + 1 \le l)$ Send M to A_{j+1} if $(j - 1 \ge 0)$ Receive packet M from A_{j-1} End

> Let t_s = start-up time, t_h = per-hop time, t_w = per-word transfer time. Then total Cost:

$$T_{comm} = t_s + l * (t_h + m * t_w)$$

7-14

Packet routing Message is packetized into q small packets of size $\sim m/q$ each. Then idea is similar to pipelining.

Algorithm to send a message M split into q packets M_0 , ... M_{q-1} from A_0 to A_1 ... to A_i to A_{i+1} ... to A_l :

ALGORITHM : 2. Packet routing

for (j = 0; j < l; j + +)for (i = 0; i < q; i + +)if $(j + 1 \le l)$ Send packet M_i to A_{j+1} if $(j - 1 \ge 0)$ Receive packet M_i from A_{j-1} End End Simplified cost model:

> Neglects overhead due to packetizing, additional header info etc.

First packet reaches destination in time $t_s + l\left(rac{m}{q} * t_w + t_h
ight)$

▶ q-1 packets left. A new packet arrives each $\frac{m}{q} * t_w + t_h$ sec. So:

$$T_{commP} = t_s + l\left(rac{m}{q} * t_w + t_h
ight) + (q-1)\left(rac{m}{q} * t_w + t_h
ight)$$

Rewrite as:

$$T_{commP} = t_s + (q+l-1)t_h + \left(1+rac{l-1}{q}
ight)*m*t_w$$

7-16

7-16

– dist

7-13

Wormhole routing

Tail Header Packet is cut in small pieces called flow control digits or "flits".

Buffer

- Flits transmitted one by one ["pipelined"]
- Header flit contains destination + routing info for all flints

Buffering at flint level [not whole packet]. One buffer designated \succ for the packet.

Tail flit frees the buffer at end.

Low latency, memory (buffer) efficient, ...

Cut-through routing

> Cut-through routing: similar but allocates buffers on a packet level instead of flit level.

7-17

7-17

Formal definition. G(V, E) mapped into G'(V', E') when each vertex in V is mapped to one or more vertices in V' and if each edge is mapped to one edge or several edges (a path) of E'.

Cost measures [see text for details]

Congestion: Max number of edges mapped into an edge in E'

Dilation: Not always possible to map an edge in *E* exactly into an edge in E'. An edge in E is then "replaced" by a path in G'. Dilation is the maximum length of such paths.

7-19

Expansion: this is simply |V'|/|V|.

Graph embeddings

Main question: We have an algorithm which uses data that is laid out according to a certain graph, for example a 2-D mesh when solving Partial Differential Equations. How can we map this data onto the network at hand if we want to optimize communication?

Monthead And Anthead A tions: a $n_x \times n_y$ processor mesh – and a linear array of length $m = n_x \times n_y$

> One Answer: If v_i is the *i*-th vertex (starting at i = 0) then map v_i into i_x, i_y where $i = i_x * n_x + i_y$ (integer division of i by n_x).

7-18

 \swarrow_{12} Is this the best answer?

Gray codes and Hypercube mappings

A Hamiltonian circuit in a hypercube represents a sequence of nbit binary numbers such that two successive numbers differ by one bit (exactly) and so that all binary numbers having n bits are represented. Binary sequences with this property are called Gray codes.

Binary reflected Gray codes:

> 1-Bit Gray Code: the sequence of the two one-bit numbers 0 and $1, G_1 = \{0, 1\}.$

> 2-bit Gray Code: take the same sequence and insert a zero in front of each number, then take the sequence in reverse order and insert a one in front of each number:

$$G_2=\{00,01,11,10\}$$

► Repeat for 3 bits:

7-23

 $G_3 = \{000, 001, 011, 010, 110, 111, 101, 100\}.$

▶ If G_i^R = the sequence obtained from G_i by reversing its order, and $0G_i$ (resp. $1G_i$) = sequence obtained from G_i by prepending a zero (resp. a one) to each element of the sequence, then

 $G_{n+1}=\{0G_n,1G_n^R\}$

C Generate the binary 4-bit reflected Gray code and visualize the corresponding path in the picture of the 4-dimensional hupercube seen earlier in this chapter.

> Likewise, whenever we fix the first three bits we obtain a p_2 -cube. The mapping then becomes clear.

7-21

Select a 3-bit Gray code for the x-direction and a 2-bit Gray code for the y-direction. Vertex (x_i, y_j) of mesh mapped to node $b_1b_2b_3 c_1c_2$ where $b_1b_2b_3$ is the 3-bit Gray code for x_i while c_1c_2 is the 2-bit Gray code for y_j .

7-23

Gray codes and Hypercube mappings

Linear arrays of length l are easy to map into n-cubes $(l \le n)$. Just use Gray codes.

A ring of length l can be mapped into the n-cube when l is even and $4 \le l \le 2^n$.

> Mapping a 2-D mesh into an n-cube. Consider for example a 2-dimensional 8 x 4 mesh, To be mapped into into the 5-cube (64 nodes).

 \blacktriangleright Label of any node A of the 5-cube split in two parts: its first three bits and its last two bits:

$$A=b_1b_2b_3\ c_1c_2$$

> Observe: When the last two bits are fixed then the resulting 2^{p_1} nodes form a p_1 -cube (with $p_1 = 3$).

7-22

Mapping linear arrays into meshes and vice-versa

Consider the following mapping of a 16-node linear array into a 4 × 4 mesh.

> What are the congestion, dilation, expansion of the mapping?

Consider now the situation of an $n \times n \times n$ 3-D mesh and a linear array of n^3 nodes. How would you map the linear array into the 3-D mesh? What are the congestion, dilation, expansion in this case?

7-24

Consider the reverse situation: a 2-D mesh mapped into a linear array (reverse mapping to the one above). What are the congestion, dilation, expansion of the mapping?

Finally consider the same scenario of mapping a 3-D mesh into a linear array. What are the congestion, dilation, expansion of the corresponding mapping?

– dist

