
DISTRIBUTED MEMORY COMPUTING

• Interconnection networks: Static vs dynamic

• Simple interconnection networks

• Hypercubes, Fat trees, ..

• Routing and Embeddings
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Distributed memory systems

Main feature: No shared global memory. Processors connected
in a certain way and may communicate with each other (message
passing).

Message exchange
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Completely connected and star networks

ä Complete network : every processor connected to all others.

ä Star network : one processor connected to all others.
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Linear arrays and Rings

ä A Linear Array and a
ring of 8 processors.
These are among the sim-
plest networks
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Two and Three-Dimensional Meshes

A 4×4 Multiprocessor Ar-
ray

ä Often implemented with wrap-around (can be viewed as a 2-D
mesh of rings) – called a “Torus”

ä IBM Blue-Gene uses a 3-D torus. [Also: Cray T3E from late 90s]
IBM’s Bluegene
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Trees and Fat Trees

ä Trees: nodes are linked in a tree structure – hard to program and
“unsymmetric” links.

ä Common remedy: double bandwidth of channels from one level
to the next higher level

Fat-Tree:

Binary tree with PEs at
the leaves and commu-
nication control proces-
sors at other nodes P0      P1      P2      P3      P4

ä Read about Thinking Machine’s CM5 Connection Machine
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Hypercubes

ä Consists of 2n nodes numbered with binary integers (using n
bits)
ä A node is connected to every other processor whose binary
number differs from its own by exactly one bit.

ä A hypercube of order 0 has one node.

ä A hypercube of order n+1 is
constructed by taking two hyper-
cubes of order n and connecting
their respective nodes in a one-to-
one manner.

0x 1x 
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Hypercubes of dimensions 0, 1, 2, and 4

0-, 1-, and 2-cubes 3-cube

4-cube
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Hypercubes (Cont.)

-1 How can you route a message from node A to node B in a
hypercube? What is the path length?

-2 What is the total number of links in a hypercube?

-3 What is the degree (in the sense of graphs) of each node?

-4 What is the diameter (max. distance between any two nodes in
the graph sense) of a hypercube?

7-9 – dist

7-9

Hypercubes (Cont.)

ä The n-cube can be built recursively from lower dimensional
cubes. Take two identical (n − 1)-cubes. Label vertices from 0
to 2n−1. Join every pair of vertices from the two cubes having the
same label. Then relabel the nodes of the first cube as 0 ∧ ai

and those of the second by 1 ∧ ai where ai= label of nodes in
(n− 1)−cube and ∧ denotes concatenation

ä There are n!2n different ways in which the 2n nodes of an n-
cube can be labeled [Remember: Adjacent nodes must differ by one
bit]

-5 Prove it [induction]

-6 Prove: There are no cycles of odd length in an n-cube
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Performance measures for interconnection networks

Diameter: Maximum distance between any two nodes in the net-
work (i.e., in the graph representing the network).

-7 What is the diameter of a 2-D grid? a 3-D grid? a 2-D torus?
a 3-D torus?

Arc connectivity: minimum number of edges to remove to discon-
nect the network graph. Represents the “redondancy” of the network
– i.e., the multiplicity of paths between nodes.

-8 What is the arc connectivity for rings? linear arrays? For trees?
Star networks? Completely connected networks? Hypercubes?
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Bisection Width minimum number of edges to be removed in order
to partition the graph into two equal halves.

-9 What is the Bisection width for rings? linear arrays? Binary
Trees? Star networks? Completely connected networks? Hyper-
cubes?

Bisection Bandwidth: volume of communication allowed between
two equal halves of network – equal to the bandwidth of the links
defined in the Bisection Width

-10 What is the bisection bandwidth of a hypercube (assume
bandwith b for each channel). What is the bisection bandwidth of a
fat tree (assume bandwith b at the leaves - doubling for each higher
level).
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Communication costs (message passing systems)

ä A message is sent through several nodes from origin to destina-
tion.

Three distinct costs:

1. Start-up time. Includes the time to prepare the message, hand-

shaking, ...

2. Per-hop time. Each time a node is traversed it is handled by

this node and routed (header read, message buffered, and sent out
to next destination)

3. Per-word transfer time. Reflects the speed (bandwidth) of each

channel. This time is the inverse of the bandwidth (in words/ sec).
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Routing methods

Store-and-forward Simplest mechanism. Algorithm to send a mes-
sage M of m words from A0 to A1 .. to Aj to Aj+1 ... to
Al:

ALGORITHM : 1 Store and forward send

for (j = 0; j < l; j + +)
if (j + 1 ≤ l) Send M to Aj+1

if (j − 1 ≥ 0) Receive packet M from Aj−1
End

ä Let ts = start-up time, th = per-hop time, tw = per-word
transfer time. Then total Cost:

Tcomm = ts + l ∗ (th + m ∗ tw)
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Packet routing Message is packetized into q small packets of size
∼ m/q each. Then idea is similar to pipelining.

Algorithm to send a message M split into q packets M0, ... Mq−1
from A0 to A1 .. to Ai to Ai+1 ... to Al:

ALGORITHM : 2 Packet routing

for (j = 0; j < l; j + +)
for (i = 0; i < q; i + +)

if (j + 1 ≤ l) Send packet Mi to Aj+1

if (j − 1 ≥ 0) Receive packet Mi from Aj−1
End

End
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Simplified cost model:

ä Neglects overhead due to packetizing, additional header info etc.

ä First packet reaches destination in time ts + l
(
m
q
∗ tw + th

)

ä q− 1 packets left. A new packet arrives each m
q
∗ tw + th sec.

So:

TcommP = ts + l

(
m

q
∗ tw + th

)
+ (q − 1)

(
m

q
∗ tw + th

)

Rewrite as:

TcommP = ts + (q + l− 1)th +
(
1 + l−1

q

)
∗m ∗ tw
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Wormhole routing

ä Packet is cut in
small pieces called flow
control digits or “flits”.

ä Flits transmitted one by one [“pipelined”]

ä Header flit contains destination + routing info for all flints

ä Buffering at flint level [not whole packet]. One buffer designated
for the packet.

ä Tail flit frees the buffer at end.

ä Low latency, memory (buffer) efficient, ..

Cut-through routing

ä Cut-through routing: similar but allocates buffers on a packet
level instead of flit level.
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Graph embeddings

Main question: We have an algorithm which uses data that is laid
out according to a certain graph, for example a 2-D mesh when
solving Partial Differential Equations. How can we map this data
onto the network at hand if we want to optimize communication?

-11 How can we embed a linear array into a 2-D array? Assump-
tions: a nx × ny processor mesh – and a linear array of length
m = nx × ny.

ä One Answer: If vi is the i-th vertex (starting at i = 0) then
map vi into ix, iy where i = ix ∗ nx + iy (integer division of i by
nx).

-12 Is this the best answer?
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Formal definition. G(V,E) mapped into G′(V ′, E′) when each
vertex in V is mapped to one or more vertices in V ′ and if each
edge is mapped to one edge or several edges (a path) of E′.

Cost measures [see text for details]

Congestion: Max number of edges mapped into an edge in E′

Dilation: Not always possible to map an edge in E exactly into
an edge in E′. An edge in E is then “replaced” by a path in G′.
Dilation is the maximum length of such paths.

Expansion: this is simply |V ′|/|V |.
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Gray codes and Hypercube mappings

A Hamiltonian circuit in a hypercube represents a sequence of n-
bit binary numbers such that two successive numbers differ by one
bit (exactly) and so that all binary numbers having n bits are
represented. Binary sequences with this property are called Gray
codes.

Binary reflected Gray codes:

ä 1-Bit Gray Code: the sequence of the two one-bit numbers 0 and
1, G1 = {0, 1}.

ä 2-bit Gray Code: take the same sequence and insert a zero in
front of each number, then take the sequence in reverse order and
insert a one in front of each number:

G2 = {00, 01, 11, 10}
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ä Repeat for 3 bits:

G3 = {000, 001, 011, 010, 110, 111, 101, 100}.

ä If GR
i = the sequence obtained from Gi by reversing its order,

and 0Gi (resp. 1Gi) = sequence obtained from Gi by prepending
a zero (resp. a one) to each element of the sequence, then

Gn+1 = {0Gn, 1G
R
n}

-13 Generate the binary 4-bit reflected Gray code and visualize the
corresponding path in the picture of the 4-dimensional hupercube
seen earlier in this chapter.
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Gray codes and Hypercube mappings

ä Linear arrays of length l are easy to map into n-cubes (l ≤ n).
Just use Gray codes.

ä A ring of length l can be mapped into the n-cube when l is even
and 4 ≤ l ≤ 2n.

ä Mapping a 2-D mesh into an n-cube. Consider for example a
2-dimensional 8 x 4 mesh, To be mapped into into the 5-cube (64
nodes).

ä Label of any node A of the 5-cube split in two parts: its first
three bits and its last two bits:

A = b1b2b3 c1c2

ä Observe: When the last two bits are fixed then the resulting 2p1

nodes form a p1-cube (with p1 = 3).
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ä Likewise, whenever we fix the first three bits we obtain a p2-cube.
The mapping then becomes clear.

ä Select a 3-bit Gray code for the x-direction and a 2-bit Gray
code for the y-direction. Vertex (xi, yj) of mesh mapped to node
b1b2b3 c1c2 where b1b2b3 is the 3-bit Gray code for xi while c1c2
is the 2-bit Gray code for yj.

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

000 001 011 010 110 111 101 100

10

11

01

00
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Mapping linear arrays into meshes and vice-versa

ä Consider the following map-
ping of a 16-node linear array into
a 4× 4 mesh.
ä What are the congestion, dila-
tion, expansion of the mapping?

-14 Consider now the situation of an n × n × n 3-D mesh and
a linear array of n3 nodes. How would you map the linear array into
the 3-D mesh? What are the congestion, dilation, expansion in this
case?
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-15 Consider the reverse situation: a 2-D mesh mapped into a linear
array (reverse mapping to the one above). What are the congestion,
dilation, expansion of the mapping?

-16 Finally consider the same scenario of mapping a 3-D mesh into
a linear array. What are the congestion, dilation, expansion of the
corresponding mapping?
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