An Illustration: hypercube Quicksort

» Goal: to sort m numbers with parallel version of Quicksort.

» Example: The sequence of numbers is: 1,2 ..., 16, 21, 22,..., 36

piv = 16 3,4,35,36 5,6,29,30
Binary tree of A

pre-selected pivots:
16

9,10,25,26

Y
Initial setting

8-1 - HQS

8-1

23,24,35,36 25,26,29,30

piv =16 29,30
A
11,12,31,32
25,26
Y
7,8127,28 13,14/33,34 7,8,11,12 1,2,13,14
31,32,35,36 29,30,33,34
6)
23,24,27,28
4
~ 11,12/15,16
2) (3
9,10,13,14
), ¢
3,4,7,8

8-2

23,24,2

33,34

9,10,

13,14

3,478 | 1,2/5,6
— e
8-3

29,30,31,32

33,34,35,36

@ 25,26,27

@

— HQS

8-3

COMMUNICATION OPERATIONS AND MESSAGE
PASSING

Introduction to programming with message passing
A preview of MPI interface

Broadcast operations

All-to-all broadcast and reduction operations
Scatter and Gather operations

All-to-all personalized communication

8-4

Introduction to message-passing

» Need to explicitly code the exchange of messages [data, control,.]

Parallel Sum of n numbers

Example: | Revisit the sum example seen earlier

for (j=0; j<p; j++)

{ // Parallel Loop

[/—-———==—=—- compute partial sums

for (i=j*m; i<(j+1)
tmp[j] += + x[i];

*xm; i++)

[/ —————————- sum-up partial sums

s=0;
for (j=0; j<p; j++)
s+=tmp [j];

// Sequential loop

8-5

— comm

8-5

>
m

Let “root” = 'master’ node where the sum ends up.

=n/p

Parallel sum with communication

Recall:

{

if (myid == root) {
read/ generate array x ;
for (j=0; j<p && j '= root ; j++)
send x[j*m:(j+1)*m-1] to proc. j
by
else A
receive xloc[l1l:m] from root ;
¥
tmp=0;
for (i=0 ; i< m; i++)

tmp+= xloc[il;

REDUCE (sum, tmp,’ADD’) // Reduction oper.

8-6

— comm

8-6

» REDUCE(sum,tmp,” ADD’) adds 'tmp’ from each PE into

sum
» (Can do reductions with add, multiply, max, min, etc..
» More on reductions later.

» Next: we will see some of the common communication fucntions
used —

» On occasion we will see their implementation with MPI

» MPI will be covered in more detail later

8-7 — comm

8-7

Communication ‘kernels’
Typical questions addressed: |

1. ldentify the important communication operations

2. Find effective algorithms for performing these on distributed
memory computers

3. Analyze their cost

» A by-product: some framework for generic algorithms

8-8

Example: Broadcast operation

» Sending a message from a 'root’ node to all nodes is a Broadcast

Message

Message

(Questions: Best way to broadcast a message from a root node to
all others in a ring? In hypercube?

8-9 — comm

8-9

Standard broadcast and reduction operations

» Reduction does a global operation (e.g. a sum) on items located
on all processors onto a 'root’ processor

» (Can be viewed as a sort of inverse of the broadcast

Broadcast Reduction

8-10 — comm

8-10

» |In parallel sum example, could replace the sends of (7 * m :
(3 + 1) «m — 1) from root to all others by a broadcast of all x
from root of the vector &. Lines 1 — 6 replaced by:

1. broadcast(x,root)

» Note however that each PE will get the whole vector.
» Corresponding MPI| code provided in class web-site

8-11 — comm

8-11

All-to-all broadcast and reduction

5 ;%S (I
» All-to-all broadcast can be (NI Eﬁ Message
5 Message

viewed as p broadcasts, one Message <>,

from each node. <}1\4 4)

» Similarly: All-to-all reduc- (I
tion is a reduction to each node Message

(different for each node).

Message Message

Note: All-reduce (# all-to-all reduce) is a reduction operation in
which the result of reduction is available in each processor

» All-reduce achievable by a reduce followed by a broadcast [not
best way]

8-12 — comm

8-12

» |mportant application of all-reduce: testing if an algorithm has

“converged” .

Example:

if

Test would be something like:

i i
~max |z, —x; .| < then stop
1=0,...,p—1

» Variable © = processor, variable k= iteration number

» Need to know max; |z — a:fc+1| in each processor.

» See text for algorithms on linear array, ring, and hypercubes

8-13

— comm

8-13

Gather and scatter operations

» Scatter is similar to a broadcast — but a different item is sent to

each processor -

» Gather does the inverse operation.

B
©
Al

\é B[C[D]E]
O= >0
/\@

O

O

ATBICID[E]
O—U<+—0

(D]

O

Gather Scatter

3-14 — comm

8-14

How would you implement a Scatter operation on a hypercube?

#01
#15| Cost?
2)
(0
/
A CIDIE|F|G|H

8-15

Initial State

G
6)
E
4)
2)
C
(0
A
Final State

— comm

8-15

For the parallel sum example — we can “scatter” the

Example: :
p subvectors to be summed up in each processors.

» In parallel sum algorithm, the lines

for(j=0; j<p && j != root ; j++) {
send x[j*m : (j+1)*m-1] to process]
else

receive xloc[l:m] from zroot ;

}

are replaced by

scatter (x)

8-16 — comm

8-16

All-to-All personalized communication

» (Can be viewed as a scatter from each node: each node sends a

distinct message to every other node.

Py Ag| A1 Az Aj Py Ao By Cyp | Dy
P, By B, B; Bs . P, Ay By Cy| D,
P, Cy Cy Oy C; ’ P, Ay By Cy Ds
Ps; Dy Dy Dy D3 P; A3 B3 Cs| Ds

» Equivalent to p gathers too (One to each node)

» Notice : operation amounts to transposing a p X p array!

#131 How would you code an all-to-all communication on a hyper-
cube?

8-17

