
MPI Basics

• Goal: Overview of MPI

• How to compile and run MPI programs

• Main MPI commands - examples

• See many other online resources available

9-1

Where to find help

ä Many tutorials and other documents including the MPI standard
available online

ä The openMPI latest documentation
https://www.open-mpi.org/doc/current/

ä The original MPI site:
https://www.mcs.anl.gov/research/projects/mpi/index.html

ä The LLNL link:
https://computing.llnl.gov/tutorials/mpi/

9-2 – mpi

9-2

Getting started: hello world from each process

#include <stdio.h>
#include <mpi.h>

int main(int argc , char *argv []) {
int nPEs , rank;
MPI_Init (&argc , &argv);
MPI_Comm_size(MPI_COMM_WORLD ,&nPEs);
MPI_Comm_rank(MPI_COMM_WORLD , &rank);
printf("Hello from process %d out of %d \n",

rank ,nPEs);
MPI_Finalize ();

}

9-3 – mpi

9-3

Comments:

ä #include <mpi.h> is mandatory: contains MPI defini-
tions, types, etc,

ä MPI Init(.,.) and MPI Finalize() start and end MPI
respectively

ä MPI Comm size gives the number of processes

ä MPI Comm rank gives the id (proc. number) of this process

ä Note: all non-MPI functions/ commands are local: e.g., printf
will run on each PE.

9-4 – mpi

9-4

Communicators

ä A communicator defines a group of processes which communicate
with each other.

ä MPI COMM WORLD is the (default) communicator: an internal
structure which includes all processes that are allowed to commu-
nicate with each other within this run.

ä Ranks, sizes, are all relative to a communicator.

ä Can define other communicators than
MPI COMM WORLD by command MPI Comm.

ä Can work with communicators using various commands:

MPI Comm group , MPI Group excl , MPI Comm create ,

9-5 – mpi

9-5

The “phixx cluster”

ä A small cluster of Xeon processors connected via a network

ä Machines in the cluster:
phi01, phi02, · · · , phi08

ä Login to any of these..

ä System is dedicated to teaching parallel programming in CSE

9-6 – mpi

9-6

Compiling, linking, and running a program

ä On the phixx cluster - a recent version of openmpi was installed
(v. 4.0.3) – it is loaded by default.

ä Instructions will be provided on how to load required modules,
compiling, etc

[One note: It is important that *all nodes* run the same version!]

ä For compiling: MPI provides mpicc for C and mpif77 (fortran
77), mpif90 (fortran 90 when installed) for fortran.

ä For the “hello world” example:

mpicc -o hello.ex hello.c

ä For large programs use makefiles

9-7 – mpi

9-7

Running a program

ä in MPICH, and openMPI a program is run with mpirun:

mpirun -np 2 hello.ex

A few options

ä help: print mpi options

mpirun -h[elp]

ä use filename as host-file:

mpirun -np 4 -machinefile < filename > executable.ex

ä Note you will need a machinefile on the phixx cluster. [a default
one will be made available].
9-8 – mpi

9-8

ä Remember: hardest aspect of parallel programming is:
Debugging

ä Explore the use of MCA parameters (Modular Component Archi-
tecture) for debugging (and more) in

https:// www.open-mpi.org/ faq/ ?category=debugging

ä More information will be added as needed.

9-9 – mpi

9-9

Sends and Receives

ä Simplest types of communication yet there are several options.
For example:

* Synchronous send

* Blocking send / blocking receive

* Non-blocking send / non-blocking receive

* Buffered send

9-10 – mpi

9-10

Blocking send will complete (return) only when the buffered data
has been sent or saved and it is safe to free or reuse send buffer

Synchronus blocking send: Handshaking takes place between re-
ceiving and sending processes before actual send.

Asynchronus blocking send: data buffered until eventual delivery
to receiving process

Blocking Receives complete (return) after the data has arrived to
receiving process

Non-blocking sends and receives are similar - they return almost
immediately. No waiting for communication to complete

9-11 – mpi

9-11

ä Non-blocking communications are useful when overlapping com-
putation with communication

ä Non-blocking operations “request” the MPI library to perform
the operation when possible. Cannot predict when this takes place

ä The application buffer (variable space, i.e., array to be sent)
should not be changed until it is known that the requested non-
blocking operation was performed

ä Can use “wait” routines and MPI Iprobe for this (see later)

9-12 – mpi

9-12

Sends and Receives: Blocking send

MPI Send(start,count,datatype,dest,tag,comm)

ä start is a pointer to first entry of data to be sent

ä count is the length of array

ä datatype one of MPI’s datatypes:
MPI INT , MPI FLOAT , MPI DOUBLE , etc,...

ä dest is the destination process

ä comm is the communicator

ä tag is a tag assigned to message so it is recognized by a
matching receive.

9-13 – mpi

9-13

There should be an associated receive. General form:

MPI Recv(start,count,datatyp,source,tag,comm,status)

ä Start, count, datatype, comm, have the same meaning as in send

ä source is the rank of sending process

ä tag is the same as the tag used in the send

ä Can also use:
MPI ANY TAG and / or MPI ANY SOURCE

ä status is a struct of type MPI Status

ä The source, tag, and count of the message actually received can
be retrieved from status.

9-14 – mpi

9-14

MPI_Status status;
MPI_Recv(..., &status);
... status.MPI_TAG; <-- get tag
... status.MPI_SOURCE; <-- get source
MPI_Get_count (&status ,datatype ,

&count); <-- get count

MPI TAG , MPI SOURCE useful in case when MPI ANY TAG
and /or MPI ANY SOURCE used in the receive

MPI Get count will tell us how much data of a particular type was
received [details shortly]

9-15 – mpi

9-15

What is in the MPI status struct?

MPI SOURCE - id of processor sending the message

MPI TAG - the message tag

MPI ERROR - error status

MPI LENGTH (Not accessible)

MPI COMM - communicator,

ä Other members reserved for internal implementation.

9-16 – mpi

9-16

ä Check on incoming messages (without receceving them) with
MPI Iprobe or MPI Probe

int MPI Iprobe(int src,int tag,MPI Comm comm,
int* flag, MPI Status stat)

ä MPI Probe is a blocking version of MPI Iprobe

ä Can wait until a specific message arrives [with MPI ANY SOURCE]

ä Can retrieve the length of a message, with MPI Get count :

int MPI Get count(MPI Status *stat,
MPI Datatype dtyp, int *cnt)

Sets cnt to number of items in the message.

9-17 – mpi

9-17

ä Example of usage: passing a variable-length string

int source = 0, tag = 100, len;
char *str;
MPI_Status status;
MPI_Probe(source , tag , MPI_COMM_WORLD , &status) ;
MPI_Get_count (&status , MPI_CHAR , &len);
if(len != MPI_UNDEFINED) str = malloc(len);
MPI_Recv(str ,len ,MPI_CHAR ,source ,tag ,

MPI_COMM_WORLD ,& status)

9-18 – mpi

9-18

Simple collective operations

MPI Bcast(start, count, datatype, root, comm)

ä Sends data from one process to all others.

ä start, count, datatype, comm : as before

ä root: origin (process #) of broadcast

MPI Reduce(start,result,count,datatype, MPI OPE,
root,comm)

MPI OPE: OPE is one of MAX, MIN, SUM, PROD, LAND, BAND,
LOR, BOR, LXOR, BXOR, MAXLOC, MINLOC

LAND = logical AND, BAND = bitwise AND. (Similarly for OR,
XOR). MPI MAXLOC , MPI MINLOC : Find Max(min) and location of
max (min)

9-19 – mpi

9-19

Scatter and Gather

MPI Scatter(void *sendbuf,int sendcnt,
MPI Datatype sendtyp,void *recvbuf,int recvcnt,
MPI Datatype recvtyp,int root,MPI Comm comm)

ä scatters sendcnt items in succession from sendbuf to processors
0. ..., p − 1.

ä Arrays sent to each PE all have same length (sendcnt)

MPI Gather (void *sendbuf,int sendcnt,
MPI Datatype sendtyp,void *recvbuf,int recvcnt,
MPI Datatype recvtyp,int root,MPI Comm comm)

9-20 – mpi

9-20

MPI Collective communication routines

Allgather Allgatherv Allreduce
Alltoall Alltoallv Bcast
Gather Gatherv Reduce
ReduceScatter Scan Scatter
Scatterv

ä The ’v’ versions: Scatterv, Gatherv, Allgatherv, Alltoallv, allow
variable counts and shifts on the original array for each destination

Scatterv:

Process 0 Process 2 Process 3Process 1

9-21 – mpi

9-21

Appendix: set-up for the phi cluster

ä The nodes are called phi01, phi02, ..., phi08

ä You can login to any of them via ssh phi0x.cselabs.umn.edu

ä Latest version of openMPI loaded by default (no need for mod-
ules)

ä One key requirement is that you should be able to login to any
node without requiring a password. Find out how to use ssh-keygen
and enable ssh without passwords:

ssh -keygen -t rsa -P ""
cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys

9-22 – mpi

9-22

ä You will need to add all the machines into ∼/.ssh/known hosts
file. For this you can ssh once to each machine. This will prevent
prompts for confirmations each time you run something.

ä The next thing you will need is a hostfile needed by MPI [see
examples provided] Here is a sample hostfile:

phi01.cselabs.umn.edu slots =16
phi02.cselabs.umn.edu slots =16
phi03.cselabs.umn.edu slots =16
phi04.cselabs.umn.edu slots =16
phi05.cselabs.umn.edu slots =16
phi06.cselabs.umn.edu slots =16
phi07.cselabs.umn.edu slots =16
phi08.cselabs.umn.edu slots =16

ä Call it hostfile or phi cluster for example

ä Run with, e.g.,

mpirun -np 32 -hostfile phi cluster test.ex

9-23 – mpi

9-23

Appendix: A few details and an example

ä Some function calls

Send-Receive Pairs

#include <mpi.h>
int MPI_Send(const void *buf , int count ,

MPI_Datatype datatype , int dest ,
int tag , MPI_Comm comm)

int MPI_Recv(void *buf , int count ,
MPI_Datatype datatype , int source ,
int tag , MPI_Comm comm ,
MPI_Status *status)

Broadcast

#include <mpi.h>
int MPI_Bcast(void *buffer , int count ,

MPI_Datatype datatype , int root ,
MPI_Comm comm)

9-24

Quoting from the documentation: (open-mpi.org):

MPI Bcast broadcasts a message from the process with rank
root to all processes of the group, itself included. It is called
by all members of group using the same arguments for comm,
root. On return, the contents of root’s communication buffer
has been copied to all processes.

ä Main point: no need to have a corresponding receive - but all
nodes in comm must issue the same command (the communication
is “collective”)

ä What are MPI Data types?

9-25 – mpi

9-25

MPI Datatypes

MPI CHAR MPI C COMPLEX
MPI WCHAR MPI C FLOAT COMPLEX
MPI SHORT MPI C DOUBLE COMPLEX
MPI INT MPI C LONG DOUBLE COMPLEX
MPI LONG MPI C BOOL
MPI LONG LONG INT MPI LOGICAL
MPI LONG LONG MPI C LONG DOUBLE COMPLEX
MPI SIGNED CHAR MPI INT8 T, MPI INT16 T
MPI UNSIGNED CHAR MPI INT32 T
MPI UNSIGNED SHORT MPI INT64 T
MPI UNSIGNED LONG MPI UINT8 T, MPI UINT16 T
MPI UNSIGNED MPI UINT32 T
MPI FLOAT MPI UINT64 T
MPI DOUBLE MPI BYTE
MPI LONG DOUBLE MPI PACKED

9-26 – mpi

9-26

Example: Compute values of ex

ä No practical value: Only goal is to illustrate a pipelined compu-
tation and sends, receives, broadcasts.

ä We will compute exp(x) by its n-th Taylor series expansion and
use Horner’s scheme:

ex ≈ 1 + x
1

(
1 + x

2

(
1 + x

3

(· · · (1 + x
n

) · · ·)))

ä In Python this can be implemented as:

x = some -value
n = some value
val = 1.0
for i in range(n,0,-1):

val = 1.0+(x/i)*val
print(val)

9-27 – mpi

9-27

General procedure: Think of a linear array. For n = 5:

West MyId East
0 <----- 1 <------ 2 <------ 3 <------ 4

Print Start

* Start: proc. n − 1 (last one) who sends
value val = 1 + (x/n) to West processor

* All other nodes: get val from East; update; and:
* Send val West *unless* MyId=0 in which case print.

ä At first assume x is set in each process

ä Next: Assume x is also sent along with val

ä Next: Use a broadcast of x instead

ä Next: In the above only one process is active at a time. What if
I need to compute a bunch of values ex0, ex1, · · · exk

9-28 – mpi

9-28

Example: Compute a sum of n numbers

Generate/ read n numbers, then scatter equal parts to each
participating PE. Each PE computes a subsum then the whole sum
is calculated by a reduction (+) of subsums.

#include <mpi.h>
int MPI_Scatter(const void *sendbuf , int sendcnt ,

MPI_Datatype sendtype , void *recvbuf ,
int recvcount , MPI_Datatype recvtype ,
int root , MPI_Comm comm)

ä Explore also the nonblocking send and scatter

#include <mpi.h>
int MPI_Isend(const void *buf , int count ,

MPI_Datatype datatype , int dest ,int tag ,
MPI_Comm comm , MPI_Request *request)

9-29 – mpi

9-29

int MPI_Iscatter(const void *sendbuf , int sendcnt ,
MPI_Datatype sendtype , void *recvbuf ,
int recvcount , MPI_Datatype recvtype ,
int root , MPI_Comm comm , MPI_Request *request)

ä Recall: nonblocking sends allow you to do some work while a
send is being processed. No need to wait until the send is completed.
Work can be done as long as we do not touch the buffer being sent.
Similarly for all non-blocking operations.

ä Syntax for (regular) reduction operation

#include <mpi.h>
int MPI_Reduce(const void *sendbuf , void *recvbuf ,

int count , MPI_Datatype datatype , MPI_Op op,
int root , MPI_Comm comm)

ä MPI Ireduce: adds a MPI Request *request at end.

ä Common MPI Op’s:
MPI SUM, MPI PROD, MPI MAX, MPI MIN

9-30 – mpi

9-30

