APPLICATIONS OF GRAPH LAPLACEANS: Graph Embeddings, and Dimension Reduction

- Graph Embeddings, vertex embeddings . The problem
- Use of Graph Laplaceans, Laplacean Eigenmaps
- Use of similarity graphs: Locally Linear Embeddings
- Explicit dimension reduction method: PCA
- Explicit graph-based dimension reduction method: LLP, ONPP.

Graph embeddings

Vertex embedding: map every vertex \boldsymbol{x}_{i} to a vector $\boldsymbol{y}_{i} \in \mathbb{R}^{d}$
$>$ Trivial use: visualize a graph $(d=2)$
$>$ Wish: mapping should preserve similarities in graph.
> Many applications [clustering, finding missing link, semi-supervised learning, community detection, ...]
$>$ We will see two *nonlinear* classical methods: Eigenmaps, LLE
> ... and two linear (explicit) ones.

Given: a graph that models some data points $x_{1}, x_{2}, \cdots, x_{n}$ [simplest case: a kNN graph of $x_{1}, x_{2}, \cdots, x_{n}$]

Data: $\boldsymbol{X}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \quad \longrightarrow$ Graph:

> Graph captures similarities, closeness, ..., in data
Objective: Build a mapping of each vertex \boldsymbol{i} to a data point $\boldsymbol{y}_{\boldsymbol{i}} \in \mathbb{R}^{\boldsymbol{d}}$

> Many methods to do this. Eigenmaps is one of the best known
$>$ Eigenmaps uses the graph Laplacean
> Recall: Graph Laplacean is a matrix defined by :

$$
L=D-W
$$

$$
\left\{\begin{array}{l}
w_{i j} \geq 0 \text { if } j \in \operatorname{Adj}(i) \quad D=\operatorname{diag}\left[d_{i i}=\sum_{j \neq i} w_{i j}\right] \\
\boldsymbol{w}_{i j}=0 \quad \text { else }
\end{array}\right.
$$

with $\boldsymbol{A d j}(\boldsymbol{i})=$ neighborhood of \boldsymbol{i} (excludes \boldsymbol{i})
$>$ Remember that vertex \boldsymbol{i} represents data item $\boldsymbol{x}_{\boldsymbol{i}}$. We will use \boldsymbol{i} or $\boldsymbol{x}_{\boldsymbol{i}}$ to refer to the vertex.
$>$ We will find the \boldsymbol{y}_{i} 's by solving an optimization problem.

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$
\mathcal{F}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad \boldsymbol{Y} D \boldsymbol{Y}^{\top}=I
$$

Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|$ to be also small (low-Dim. data)
> Original data used indirectly through its graph
$>$ Objective function can be translated to a trace (see Property 3 in Lecture notes 9) and will yield a sparse eigenvalue problem

> Problem translates to:

$$
\left\{\begin{array}{l}
\min _{\boldsymbol{Y} \in \mathbb{R}^{d \times n}} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] . \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
\end{array}\right.
$$

$>$ Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

$>$ An $\boldsymbol{n} \times \boldsymbol{n}$ sparse eigenvalue problem [In 'sample' space]
$>$ Note: can assume $\boldsymbol{D}=\boldsymbol{I}$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

Locally Linear Embedding (Roweis-Saul-00)

$>$ LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed: want to preserve graph
1. Graph: Each $\boldsymbol{x}_{\boldsymbol{i}}$ is written as a convex combination of its k nearest neighbors:
$x_{i} \approx \Sigma w_{i j} x_{j}, \quad \sum_{j \in N_{i}} w_{i j}=1$
$>$ Optimal weights computed ('local calculation') by minimizing

$$
\left\|x_{i}-\Sigma w_{i j} x_{j}\right\| \quad \text { for } \quad i=1, \cdots, n
$$

2. Mapping:

The $\boldsymbol{y}_{\boldsymbol{i}}$'s should obey the same 'affinity' as \boldsymbol{x}_{i} 's \rightsquigarrow

Minimize:

$$
\sum_{i}\left\|\boldsymbol{y}_{i}-\sum_{j} w_{i j} \boldsymbol{y}_{j}\right\|^{2} \quad \text { subject to: } \quad \boldsymbol{Y} \mathbb{1}=0, \quad \boldsymbol{Y} \boldsymbol{Y}^{\top}=\boldsymbol{I}
$$

Solution:

$$
\left(I-W^{\top}\right)(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top}
$$

$>\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(\boldsymbol{I}-\boldsymbol{W})$ replaces the graph Laplacean of eigenmaps

Implicit vs explicit mappings

> Background: Principal Component Analysis (PCA)
Dimension reduction via PCA: We are given a data set $\boldsymbol{X}=$ $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and want a linear mapping from \boldsymbol{X} to \boldsymbol{Y}, expressed as:

$$
\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X} \quad \boldsymbol{X} \in \mathbb{R}^{m \times n} ; \quad \boldsymbol{V} \in \mathbb{R}^{m \times d}
$$

$>\boldsymbol{m}$-dimens. objects $\left(x_{i}\right)$ 'flattened' to \boldsymbol{d}-dimens. space $\left(\boldsymbol{y}_{\boldsymbol{i}}\right)$

$>\ln$ PCA \boldsymbol{V} is orthogonal $\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{V}=\boldsymbol{I}\right)$
$>$ In Principal Component Analysis $\boldsymbol{V} \in \mathbb{R}^{m \times d}$ is computed to maximize variance of projected data:

$$
\max _{V ; V^{\top} V=I} \sum_{i=1}^{d}\left\|y_{i}-\frac{1}{n} \sum_{j=1}^{n} y_{j}\right\|_{2}^{2}, \quad y_{i}=V^{\top} x_{i}
$$

Leads to maximizing

$$
\operatorname{Tr}\left[\boldsymbol{V}^{\top}\left(\boldsymbol{X}-\boldsymbol{\mu} e^{\top}\right)\left(\boldsymbol{X}-\boldsymbol{\mu} e^{\top}\right)^{\top} \boldsymbol{V}\right], \quad \boldsymbol{\mu}=\frac{1}{n} \Sigma_{i=1}^{n} x_{i}
$$

$>$ Solution $\boldsymbol{V}=\{$ dominant eigenvectors $\}$ of the covariance matrix

Explicit (linear) vs. Implicit (nonlinear) mappings:

$>\operatorname{In}$ PCA the mapping Φ from high-dimensional space $\left(\mathbb{R}^{m}\right)$ to low-dimensional space $\left(\mathbb{R}^{d}\right)$ is explicitly known:

$$
y=\Phi(x) \equiv V^{T} x
$$

> In Eigenmaps and LLE we only know

$$
y_{i}=\phi\left(x_{i}\right), i=1, \cdots, n
$$

$>$ Mapping ϕ is now implicit: Very difficult to compute $\phi(\boldsymbol{x})$ for an \boldsymbol{x} that is not in the sample (i.e., not one of the $\boldsymbol{x}_{\boldsymbol{i}}$'s)
$>$ Inconvenient for classification. Thus is known as the "The out-of-sample extension" problem

Locally Preserving Projections (He-Niyogi-03)

> LPP is a linear dimensionality reduction technique
> Recall the setting:
Want $\boldsymbol{V} \in \mathbb{R}^{m \times d} ; \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$

$>$ Starts with the same neighborhood graph as Eigenmaps: $L \equiv$ $D-W=$ graph 'Laplacean'; with $D \equiv \operatorname{diag}\left(\left\{\Sigma_{i} \boldsymbol{w}_{i j}\right\}\right)$.
> Optimization problem is to solve

$$
\min _{Y \in \mathbb{R}^{d \times n}, Y D Y^{\top}=I} \Sigma_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}, \quad \boldsymbol{Y}=V^{\top} X
$$

$>$ Difference with eigenmaps: \boldsymbol{Y} is an explicit projection of \boldsymbol{X}
> Solution (sort eigenvalues increasingly)

$$
\boldsymbol{X} \boldsymbol{L} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\top} \boldsymbol{v}_{i} \quad \boldsymbol{y}_{i,:}=\boldsymbol{v}_{\boldsymbol{i}}^{\top} \boldsymbol{X}
$$

$>$ Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

$>$ Orthogonal Neighborhood Preserving Projections
$>$ A linear (orthogonoal) version of LLE obtained by writing \boldsymbol{Y} in the form $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
> Same graph as LLE. Objective: preserve the affinity graph (as in LLE) *but* with the constraint $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
> Problem solved to obtain mapping:

$$
\begin{aligned}
& \quad \min _{V} \operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(\boldsymbol{I}-\boldsymbol{W}) \boldsymbol{X}^{\top} \boldsymbol{V}\right] \\
& \text { s.t. } \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}
\end{aligned}
$$

$>\operatorname{In}$ LLE replace $\boldsymbol{V}^{\top} \boldsymbol{X}$ by \boldsymbol{Y}

More recent methods

$>$ Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,

See the following papers:
[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learning on Graphs: Methods and Applications arXiv:1709.05584v3
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph Representations with Global Structural Information, CIKM, ACM Conference on Information and Knowledge Management, 24
[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed Large-scale Natural Graph Factorization [Proc. WWW 2013, May 1317, 2013, Rio de Janeiro, Brazil]
... among many others

