
APPLICATIONS OF GRAPH LAPLACEANS: Graph

Embeddings, and Dimension Reduction

• Graph Embeddings, vertex embeddings . The problem

• Use of Graph Laplaceans, Laplacean Eigenmaps

• Use of similarity graphs: Locally Linear Embeddings

• Explicit dimension reduction method: PCA

• Explicit graph-based dimension reduction method: LLP, ONPP.

Graph embeddings

Vertex embedding: map every vertex xi to a vector yi ∈ Rd

ä Trivial use: visualize a graph (d = 2)

ä Wish: mapping should preserve similarities in graph.

ä Many applications [clustering, finding missing link, semi-supervised
learning, community detection, ...]

ä We will see two *nonlinear* classical methods: Eigenmaps, LLE
...

ä ... and two linear (explicit) ones.

11-2 – graphEmbed

Given: a graph that models some data points x1, x2, · · · , xn
[simplest case: a kNN graph of x1, x2, · · · , xn]

Data: X = [x1, x2, · · · , xn] −→ Graph:

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

ä Graph captures similarities, closeness, ...,
in data
Objective: Build a mapping of each vertex
i to a data point yi ∈ Rd

x

x
j

i

y
i

y
j

ä Many methods to do this. Eigenmaps is one of the best known

11-3 – graphEmbed

ä Eigenmaps uses the graph Laplacean

ä Recall: Graph Laplacean is a matrix defined by :

L = D −W

{
wij ≥ 0 if j ∈ Adj(i)
wij = 0 else

D = diag


dii =

∑

j 6=i
wij




with Adj(i) = neighborhood of i (excludes i)

ä Remember that vertex i represents data item xi. We will use i
or xi to refer to the vertex.

ä We will find the yi’s by solving an optimization problem.

11-4 – graphEmbed

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi−xj‖ is small (orig.
data), we want ‖yi−yj‖ to be also small
(low-Dim. data)
ä Original data used indirectly through
its graph
ä Objective function can be translated to
a trace (see Property 3 in Lecture notes 9)
and will yield a sparse eigenvalue problem

x

x
j

i

y
i

y
j

11-5 – graphEmbed

ä Problem translates to:

min


Y ∈ Rd×n
Y D Y > = I

Tr
[
Y (D −W)Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W)ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data. Problem
becomes

(I −W)ui = λiui ; yi = u>i ; i = 1, · · · , d

11-6 – graphEmbed

Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex
combination of its k nearest neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1
ä Optimal weights computed (’local cal-
culation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i

11-7 – graphEmbed

2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s

Minimize:

∑

i

∥∥∥∥∥∥
yi −

∑

j

wijyj

∥∥∥∥∥∥

2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W)ui = λiui; yi = u>i .

ä (I−W>)(I−W) replaces the graph Laplacean of eigenmaps

11-8 – graphEmbed

Implicit vs explicit mappings

ä Background: Principal Component Analysis (PCA)

Dimension reduction via PCA: We are given a data set X =
[x1, x2, . . . , xn], and want a linear mapping from X to Y , ex-
pressed as:

Y = V >X X ∈ Rm×n; V ∈ Rm×d
→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flat-
tened’ to d-dimens. space (yi)

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä In PCA V is orthogonal (V TV = I)
11-9 – graphEmbed

ä In Principal Component Analysis V ∈ Rm×d is computed to
maximize variance of projected data:

max
V ; V >V=I

d∑

i=1

∥∥∥∥∥∥
yi −

1

n

n∑

j=1

yj

∥∥∥∥∥∥

2

2

, yi = V >xi.

ä Leads to maximizing

Tr
[
V >(X − µe>)(X − µe>)>V

]
, µ = 1

n
Σn
i=1xi

ä Solution V = { dominant eigenvectors } of the covariance
matrix

11-10 – graphEmbed

Explicit (linear) vs. Implicit (nonlinear) mappings:

ä In PCA the mapping Φ from high-dimensional space (Rm) to
low-dimensional space (Rd) is explicitly known:

y = Φ(x) ≡ V Tx

ä In Eigenmaps and LLE we only know

yi = φ(xi), i = 1, · · · , n

ä Mapping φ is now implicit: Very difficult to compute φ(x) for
an x that is not in the sample (i.e., not one of the xi’s)

ä Inconvenient for classification. Thus is known as the “The out-
of-sample extension” problem

11-11 – graphEmbed

Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps: L ≡
D −W = graph ‘Laplacean’; with D ≡ diag({Σiwij}).

11-12 – graphEmbed

ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is an explicit projection of X

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]

11-13 – graphEmbed

ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y in
the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph (as in
LLE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W)X>V

]

s.t. V TV = I

ä In LLE replace V >X by Y

11-14 – graphEmbed

More recent methods

ä Quite a bit of recent work - e.g., methods: node2vec, DeepWalk,
GraRep,

See the following papers:

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representa-
tion Learning on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning
Graph Representations with Global Structural Information, CIKM,
ACM Conference on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy ,
Distributed Large-scale Natural Graph Factorization [Proc. WWW
2013, May 1317, 2013, Rio de Janeiro, Brazil]

... among many others
11-15 – graphEmbed

