APPLICATIONS OF GRAPH LAPLACEANS: Graph

Embeddings, and Dimension Reduction

e Graph Embeddings, vertex embeddings . The problem
e Use of Graph Laplaceans, Laplacean Eigenmaps

e Use of similarity graphs: Locally Linear Embeddings

e Explicit dimension reduction method: PCA

e Explicit graph-based dimension reduction method: LLP, ONPP.

Graph embeddings

Vertex embedding:  map every vertex x; to a vector y; € R?
» Trivial use: visualize a graph (d = 2)
»  Wish: mapping should preserve similarities in graph.

» Many applications [clustering, finding missing link, semi-supervised
learning, community detection, .. ]|

»  We will see two *nonlinear* classical methods: Eigenmaps, LLE

» ... and two linear (explicit) ones.
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Given: a graph that models some data points @y, 2, * , Ty
[simplest case: a kNN graph of @1, @a,- -+ , ;)

Data: X = [®1,®2,+* y&,] —— Graph:

» Graph captures similarities, closeness, ..., ’

in data \\\

Objective: Build a mapping of each vertex
i to a data point y; € R : ;g ,

» Many methods to do this. Eigenmaps is one of the best known
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» Eigenmaps uses the graph Laplacean
» Recall: Graph Laplacean is a matrix defined by :
L=D-W

D = diag dn = 2 Wij

JFi

w;j; =0 else

with Adj(2) = neighborhood of 7 (excludes ¢)

» Remember that vertex ¢ represents data item x;. We will use 2
or x; to refer to the vertex.

»  We will find the y;'s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*
FY)= Z wij|lyi — y;||* subjectto YDY ' =T

5,j=1

Motivation:  if ||x; — ;|| is small (orig.
data), we want ||y; —y,|| to be also small
(low-Dim. data)

» Original data used indirectly through
its graph

» Objective function can be translated to
a trace (see Property 3 in Lecture notes 9)
and will yield a sparse eigenvalue problem
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» Problem translates to:

min Tr [Y(D - W)YT] :
Y c Rdxn
YDYT =1

» Solution (sort eigenvalues increasingly):

(D — W)u; = A\iDu; ; yi:u;’r; t=1,---,d

» An n X n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem
becomes

I—W)u; =X u;; yi=u; i=1,---,d
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a convex
combination of its k nearest neighbors:
€T, = Zwija:j, ZjENi Wij = 1
»  Optimal weights computed ('local cal-
culation’) by minimizing

|z; — Zw;jx;|| for ¢=1,---,n
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2. Mapping:
The y;'s should obey the same 'affinity’ as x;'s ~

Minimize:
2

Z Yi — Z W subjectto: Y 1=0, YY' =1
i J

(2

Solution:

(I — WT)(I — W)u@ = )\iui; Y; = ’U,T .

7

» (I —WT)(I—W) replaces the graph Laplacean of eigenmaps
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Implicit vs explicit mappings

» Background: Principal Component Analysis (PCA)

Dimension reduction via PCA: We are given a data set X =
[T1,x2,...,2Ty], and want a linear mapping from X to Y, ex-
pressed as:

Y:VTX X c Rmxn; VvV c Rmxd
— Y € Réx»

n

» m-dimens. objects (x;) 'flat- m‘ X x |\\

tened’ to d-dimens. space (y;) - “
o[vT ][ Y w7 ]l

n

» In PCA V is orthogonal (VIV = 1)
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» In | Principal Component Analysis V' &€ R™*9 is computed to
maximize variance of projected data:

2

1 n
max >l — n il » vi=Via.
: =,

» Leads to maximizing

Tr [VI(X —pe") (X —pe")TV], p=137

» Solution V' = { dominant eigenvectors } of the covariance
matrix
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Explicit (linear) vs. Implicit (nonlinear) mappings:

» In PCA the mapping ® from high-dimensional space (R™) to
low-dimensional space (R?) is explicitly known:

y=®(x)=V7izx
» In Eigenmaps and LLE we only know
Yi = (}S(ZBZ),’L =1,---,n

»  Mapping ¢ is now implicit: Very difficult to compute ¢ () for
an x that is not in the sample (i.e., not one of the x;'s)

» Inconvenient for classification. Thus is known as the “The out-
of-sample extension” problem
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Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting: m X x |\
Want V € Rm*4 Y = VT X m )
allvt JL Yy wilm [

n

» Starts with the same neighborhood graph as Eigenmaps: L =
D — W = graph 'Laplacean’; with D = diag({Z;w;;}).
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» Optimization problem is to solve

i o yson Moy — sl —_yvT
YeRde{H;IDYT:I Yijwijllys —ysll°, Y =V X,

» Difference with eigenmaps: Y is an explicit projection of X

» Solution (sort eigenvalues increasingly)

XLXT’Ui = AlXDXT’Uz Yi,: = ’U;I—X

» Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

»  Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y in
thefomY = VTX

» Same graph as LLE. Objective: preserve the affinity graph (as in
LLE) *but* with the constraint Y = VT X

» Problem solved to obtain mapping:
min Tr [VTX(I — WU — W)XTV]
st. VIV =1
» In LLE replace VX by Y
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More recent methods

»  Quite a bit of recent work - e.g., methods: node2vec, DeepWalk,
GraRep, ....

See the following papers:

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representa-
tion Learning on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning
Graph Representations with Global Structural Information, CIKM,
ACM Conference on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy,
Distributed Large-scale Natural Graph Factorization [Proc. WWW
2013, May 1317, 2013, Rio de Janeiro, Brazil]

.. among many others
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