Iterative methods: Basic relaxation techniques

- Relaxation methods: Jacobi, Gauss-Seidel, SOR
- Basic convergence results
- Optimal relaxation parameter for SOR
- See Chapter 4 of text for details.

Basic relaxation schemes

- Relaxation schemes: methods that modify one component of current approximation at a time
$>$ Based on the decomposition
$A=D-E-F$ with:
$\boldsymbol{D}=\operatorname{diag}(\mathrm{A}),-\boldsymbol{E}=$ strict lower part of \boldsymbol{A} and $-\boldsymbol{F}=$ its strict upper part.

Gauss-Seidel iteration for solving $\boldsymbol{A x}=\boldsymbol{b}$:
$>$ corrects j-th component of current approximate solution, to zero the $j-t h$ component of residual for $j=1,2, \cdots, n$.
> Gauss-Seidel iteration can be expressed as:

$$
(D-E) x^{(k+1)}=\boldsymbol{F} \boldsymbol{x}^{(k)}+\boldsymbol{b}
$$

Can also define a backward Gauss-Seidel Iteration:

$$
(D-F) x^{(k+1)}=E x^{(k)}+b
$$

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the splitting:

$$
\omega A=(D-\omega E)-(\omega F+(1-\omega) D)
$$

\rightarrow successive overrelaxation, (SOR):

$$
(D-\omega E) x^{(k+1)}=[\omega F+(1-\omega) D] x^{(k)}+\omega b
$$

Iteration matrices

$>$ Previous methods based on a splitting of $A: \quad A=M-N \rightarrow$

$$
M x=N x+b \quad \rightarrow \quad M x^{(k+1)}=N x^{(k)}+b \rightarrow
$$

$$
x^{(k+1)}=M^{-1} N x^{(k)}+M^{-1} b \equiv G x^{(k)}+f
$$

Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
\begin{aligned}
G_{J a c} & =D^{-1}(E+F)=I-D^{-1} A \\
G_{G S} & =(D-E)^{-1} F=I-(D-E)^{-1} A \\
G_{S O R} & =(D-\omega E)^{-1}(\omega F+(1-\omega) D) \\
& =I-\left(\omega^{-1} D-E\right)^{-1} A \\
G_{S S O R} & =I-\omega(2-\omega)(D-\omega F)^{-1} D(D-\omega E)^{-1} A
\end{aligned}
$$

General convergence result

Consider the iteration: $\quad x^{(k+1)}=G x^{(k)}+f$
(1) Assume that $\rho(G)<1$. Then $I-G$ is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $\boldsymbol{x}^{(0)}$.
(2) If iteration converges for any f and $x^{(0)}$ then $\rho(G)<1$.

Example: Richardson's iteration

$$
x^{(k+1)}=x^{(k)}+\alpha\left(b-A x^{(k)}\right)
$$

$\underbrace{}_{01}$ Assume $\Lambda(A) \subset \mathbb{R}$. When does the iteration converge?

A few well-known results

> Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, i=1, \cdots, n
$$

$>$ SOR converges for $0<\boldsymbol{\omega}<\mathbf{2}$ for SPD matrices
$>$ The optimal $\boldsymbol{\omega}$ is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.
$>$ A matrix has property \boldsymbol{A} if it can be (symmetrically) permuted into a 2×2 block matrix whose diagonal blocks are diagonal.

$$
P A P^{T}=\left[\begin{array}{cc}
D_{1} & E \\
E^{T} & D_{2}
\end{array}\right]
$$

$>$ Let \boldsymbol{A} be a matrix which has property \boldsymbol{A}. Then the eigenvalues $\boldsymbol{\lambda}$ of the SOR iteration matrix and the eigenvalues $\boldsymbol{\mu}$ of the Jacobi iteration matrix are related by

$$
(\lambda+\omega-1)^{2}=\lambda \omega^{2} \mu^{2}
$$

$>$ The optimal $\boldsymbol{\omega}$ for matrices with property \boldsymbol{A} is given by

$$
\omega_{o p t}=\frac{2}{1+\sqrt{1-\rho(B)^{2}}}
$$

where \boldsymbol{B} is the Jacobi iteration matrix.

An observation Introduction to Preconditioning

$>$ The iteration $x^{(k+1)}=G x^{(k)}+f$ is attempting to solve $(I-G) x=f$. Since G is of the form $G=M^{-1}[M-A]$ and $f=M^{-1} b$, this system becomes

$$
M^{-1} A x=M^{-1} b
$$

where for SSOR, for example, we have

$$
M_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

referred to as the SSOR 'preconditioning' matrix.
In other words:
Relaxation iter. \Longleftrightarrow Preconditioned Fixed Point Iter.

Projection methods

- Introduction to projection-type techniques
- Sample one-dimensional Projection methods
- Some theory and interpretation -
- See Chapter 5 of text for details.

Projection Methods

$>$ The main idea of projection methods is to extract an approximate solution from a subspace.
$>$ We define a subspace of approximants of dimension \boldsymbol{m} and a set of \boldsymbol{m} conditions to extract the solution
> These conditions are typically expressed by orthogonality constraints.
> This defines one basic step which is repeated until convergence (alternatively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be viewed as a projection step

Background on projectors

$>$ A projector is a linear operator

$$
P^{2}=P
$$ that is idempotent:

A few properties:

- \boldsymbol{P} is a projector iff $\boldsymbol{I}-\boldsymbol{P}$ is a projector
- $x \in \operatorname{Ran}(P)$ iff $x=P x$ iff $x \in \operatorname{Null}(I-P)$
- This means that: $\operatorname{Ran}(P)=\operatorname{Null}(I-P)$.
- Any $\boldsymbol{x} \in \mathbb{R}^{n}$ can be written (uniquely) as $\boldsymbol{x}=\boldsymbol{x}_{1}+x_{2}$, $x_{1}=P x \in \operatorname{Ran}(P) x_{2}=(I-P) x \in \operatorname{Null}(P)$ - So:

$$
\mathbb{R}^{n}=\operatorname{Ran}(P) \oplus \operatorname{Null}(P)
$$

Δ_{2} 2 Prove the above properties

Background on projectors (Continued)

> The decomposition $\mathbb{R}^{n}=\boldsymbol{K} \oplus \boldsymbol{S}$ defines a (unique) projector P :

- From $\boldsymbol{x}=\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$, set $\boldsymbol{P} \boldsymbol{x}=\boldsymbol{x}_{1}$.
- For this $\boldsymbol{P}: \operatorname{Ran}(\boldsymbol{P})=\boldsymbol{K}$ and $\operatorname{Null}(\boldsymbol{P})=\boldsymbol{S}$.
- Note: $\operatorname{dim}(K)=m, \operatorname{dim}(S)=n-m$.
$>\mathrm{Pb}$: express mapping $\boldsymbol{x} \rightarrow \boldsymbol{u}=\boldsymbol{P} \boldsymbol{x}$ in terms of $\boldsymbol{K}, \boldsymbol{S}$
$>$ Note $\boldsymbol{u} \in \boldsymbol{K}, \boldsymbol{x}-\boldsymbol{u} \in S$
Express 2nd part with \boldsymbol{m} constraints: let $\boldsymbol{L}=\boldsymbol{S}^{\perp}$, then

$$
\boldsymbol{u}=\boldsymbol{P} \boldsymbol{x} \text { iff }\left\{\begin{array}{c}
u \in \boldsymbol{K} \\
x-u \perp L
\end{array}\right.
$$

$>$ Projection onto \boldsymbol{K} and orthogonally to L

> Illustration: \boldsymbol{P} projects onto \boldsymbol{K} and orthogonally to \boldsymbol{L}
$>$ When $\boldsymbol{L}=\boldsymbol{K}$ projector is orthogonal.
$>$ Note: $\boldsymbol{P} \boldsymbol{x}=0$ iff $\boldsymbol{x} \perp \boldsymbol{L}$.

Projection methods

$>$ Initial Problem:
$b-A x=0$
Given two subspaces K and L of \mathbb{R}^{N} define the approximate problem:

Find $\tilde{\boldsymbol{x}} \in \boldsymbol{K}$ such that $\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}} \perp \boldsymbol{L}$

$>$ Petrov-Galerkin condition
$>\boldsymbol{m}$ degrees of freedom $(\boldsymbol{K})+\boldsymbol{m}$ constraints $(\boldsymbol{L}) \rightarrow$
> a small linear system ('projected problem')
> This is a basic projection step. Typically a sequence of such steps are applied
$>$ With a nonzero initial guess \boldsymbol{x}_{0}, approximate problem is
Find $\quad \tilde{x} \in x_{0}+\boldsymbol{K}$ such that $\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}} \perp \boldsymbol{L}$
Write $\tilde{\boldsymbol{x}}=\boldsymbol{x}_{0}+\boldsymbol{\delta}$ and $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0} . \rightarrow$ system for $\boldsymbol{\delta}$:

Find $\boldsymbol{\delta} \in \boldsymbol{K}$ such that $\boldsymbol{r}_{0}-\boldsymbol{A} \boldsymbol{\delta} \perp \boldsymbol{L}$

*3 Formulate Gauss-Seidel as a projection method -
(4) Generalize Gauss-Seidel by defining subspaces consisting of 'blocks' of coordinates span $\left\{e_{i}, e_{i+1}, \ldots, e_{i+p}\right\}$

Matrix representation:

Let

- $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$ a basis of $\boldsymbol{K} \&$
- $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right]$ a basis of L
$>$ Write approximate solution as $\tilde{\boldsymbol{x}}=\boldsymbol{x}_{0}+\delta \equiv \boldsymbol{x}_{0}+\boldsymbol{V} \boldsymbol{y}$ where $\boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}$. Then Petrov-Galerkin condition yields:

$$
W^{T}\left(r_{0}-A V y\right)=0
$$

> Therefore,

$$
\tilde{x}=x_{0}+V\left[W^{T} A V\right]^{-1} W^{T} r_{0}
$$

Remark: In practice $\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces \boldsymbol{K}, and \boldsymbol{L};
2. Choose bases:

$$
\begin{aligned}
& \boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right] \text { for } \boldsymbol{K} \text { and } \\
& \boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right] \text { for } \boldsymbol{L} .
\end{aligned}
$$

$$
r \leftarrow b-A x
$$

3. Compute :

$$
\begin{aligned}
& y \leftarrow\left(W^{T} A V\right)^{-1} W^{T} r \\
& x \leftarrow x+\boldsymbol{V} y
\end{aligned}
$$

Projection methods: Operator form representation

$>$ Let $\boldsymbol{\Pi}=$ the orthogonal projector onto \boldsymbol{K} and
\mathcal{Q} the (oblique) projector onto \boldsymbol{K} and orthogonally to \boldsymbol{L}.

$$
\begin{array}{ccl}
\Pi x & \in K, & x-\Pi x \perp K \\
\mathcal{Q} x & \in K, & x-\mathcal{Q} x \perp L
\end{array}
$$

Π and \mathcal{Q} projectors
Assumption: no vector of K is \perp to L

In the case $x_{0}=0$, approximate problem amounts to solving

$$
\mathcal{Q}(b-A x)=0, \quad x \in K
$$

or in operator form (solution is $\boldsymbol{\Pi x}$)

$$
\mathcal{Q}(b-A \Pi x)=0
$$

Question: what accuracy can one expect?
$>$ Let \boldsymbol{x}^{*} be the exact solution. Then

1) We cannot get better accuracy than $\left\|(I-\Pi) x^{*}\right\|_{2}$, i.e.,

$$
\left\|\tilde{x}-x^{*}\right\|_{2} \geq\left\|(I-\Pi) x^{*}\right\|_{2}
$$

2) The residual of the exact solution for the approximate problem satisfies:

$$
\left\|b-\mathcal{Q} A \Pi x^{*}\right\|_{2} \leq\|\mathcal{Q} A(I-\Pi)\|_{2}\left\|(I-\Pi) x^{*}\right\|_{2}
$$

Two Important Particular Cases.

1. $L=K$
$>$ When \boldsymbol{A} is SPD then $\left\|x^{*}-\tilde{x}\right\|_{A}=\min _{z \in K}\left\|x^{*}-z\right\|_{A}$.
> Class of Galerkin or Orthogonal projection methods
$>$ Important member of this class: Conjugate Gradient (CG) method
2. $L=A K$.

In this case $\|b-A \tilde{\boldsymbol{x}}\|_{2}=\min _{z \in K}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{z}\|_{2}$
> Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

One-dimensional projection processes

$$
\begin{aligned}
& K=\operatorname{span}\{d\} \\
& \text { and } \\
& L=\operatorname{span}\{e\}
\end{aligned}
$$

Then $\tilde{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{\alpha} \boldsymbol{d}$. Condition $\boldsymbol{r}-\boldsymbol{A} \boldsymbol{\delta} \perp \boldsymbol{e}$ yields

$$
\alpha=\frac{(r, e)}{(A d, e)}
$$

> Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration
(3) Residual norm steepest descent

1. Steepest descent.

A is SPD. Take at each step $\boldsymbol{d}=\boldsymbol{r}$ and $\boldsymbol{e}=\boldsymbol{r}$.

$>$ Each step minimizes $f(x)=\left\|x-x^{*}\right\|_{A}^{2}=\left(A\left(x-x^{*}\right),(x-\right.$ $\left.x^{*}\right)$) in direction $-\nabla f$.
$>$ Convergence guaranteed if \boldsymbol{A} is SPD.
A5 As is formulated, the above algorithm requires 2 'matvecs' per step. Reformulate it so only one is needed.

Convergence based on the Kantorovitch inequality: Let \boldsymbol{B} be an SPD matrix, $\boldsymbol{\lambda}_{\max }, \boldsymbol{\lambda}_{\text {min }}$ its largest and smallest eigenvalues. Then,

$$
\frac{(B x, x)\left(B^{-1} x, x\right)}{(x, x)^{2}} \leq \frac{\left(\lambda_{\max }+\lambda_{\min }\right)^{2}}{4 \lambda_{\max } \lambda_{\min }}, \quad \forall x \neq 0
$$

> This helps establish the convergence result
Let \boldsymbol{A} an SPD matrix. Then, the \boldsymbol{A}-norms of the error vectors $d_{k}=x_{*}-x_{k}$ generated by steepest descent satisfy:

$$
\left\|d_{k+1}\right\|_{A} \leq \frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}\left\|d_{k}\right\|_{A}
$$

$>$ Algorithm converges for any initial guess \boldsymbol{x}_{0}.

Proof: Observe $\left\|d_{k+1}\right\|_{A}^{2}=\left(A d_{k+1}, d_{k+1}\right)=\left(r_{k+1}, d_{k+1}\right)$
> by substitution,

$$
\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}-\alpha_{k} r_{k}\right)
$$

$>$ By construction $r_{k+1} \perp r_{k}$ so we get $\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}\right)$. Now:

$$
\begin{aligned}
\left\|d_{k+1}\right\|_{A}^{2} & =\left(r_{k}-\alpha_{k} A r_{k}, d_{k}\right) \\
& =\left(r_{k}, A^{-1} r_{k}\right)-\alpha_{k}\left(r_{k}, r_{k}\right) \\
& =\left\|d_{k}\right\|_{A}^{2}\left(1-\frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A r_{k}\right)} \times \frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A^{-1} r_{k}\right)}\right) .
\end{aligned}
$$

Result follows by applying the Kantorovich inequality.

2. Minimal residual iteration.

A positive definite ($\boldsymbol{A}+\boldsymbol{A}^{\boldsymbol{T}}$ is SPD). Take at each step $\boldsymbol{d}=\boldsymbol{r}$ and $e=\boldsymbol{A r}$.

$$
\text { Iteration: } \begin{array}{|l|}
\hline r \leftarrow b-A x \\
\alpha \leftarrow(A r, r) /(A r, A r) \\
x \leftarrow x+\alpha r \\
\hline
\end{array}
$$

$>$ Each step minimizes $f(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A x}\|_{2}^{2}$ in direction \boldsymbol{r}.
$>$ Converges under the condition that $A+A^{T}$ is SPD.
$\$_{0}$ As is formulated, the above algorithm would require 2 'matvecs' at each step. Reformulate it so that only one matvec is required

Convergence

Let \boldsymbol{A} be a real positive definite matrix, and let

$$
\mu=\lambda_{\min }\left(A+A^{T}\right) / 2, \quad \sigma=\|A\|_{2}
$$

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

$$
\left\|r_{k+1}\right\|_{2} \leq\left(1-\frac{\mu^{2}}{\sigma^{2}}\right)^{1 / 2}\left\|r_{k}\right\|_{2}
$$

$>$ In this case Min. Res. converges for any initial guess x_{0}.

Proof: Similar to steepest descent. Start with

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k}-\alpha_{k} A r_{k}, r_{k}-\alpha_{k} A r_{k}\right) \\
& =\left(r_{k}-\alpha_{k} A r_{k}, r_{k}\right)-\alpha_{k}\left(r_{k}-\alpha_{k} A r_{k}, A r_{k}\right)
\end{aligned}
$$

By construction, $r_{k+1}=r_{k}-\alpha_{k} A r_{k}$ is $\perp A r_{k} .>\left\|r_{k+1}\right\|_{2}^{2}=$ $\left(r_{k}-\alpha_{k} A r_{k}, r_{k}\right)$. Then:

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k}-\alpha_{k} A r_{k}, r_{k}\right) \\
& =\left(r_{k}, r_{k}\right)-\alpha_{k}\left(A r_{k}, r_{k}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)}{\left(r_{k}, r_{k}\right)} \frac{\left(A r_{k}, r_{k}\right)}{\left(A r_{k}, A r_{k}\right)}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)^{2}}{\left(r_{k}, r_{k}\right)^{2}} \frac{\left\|r_{k}\right\|_{2}^{2}}{\left\|A r_{k}\right\|_{2}^{2}}\right)
\end{aligned}
$$

Result follows from the inequalities $(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}) /(\boldsymbol{x}, \boldsymbol{x}) \geq \boldsymbol{\mu}>0$ and $\left\|\boldsymbol{A r} \boldsymbol{r}_{k}\right\|_{2} \leq\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{r}_{k}\right\|_{2}$.

3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step $\boldsymbol{d}=\boldsymbol{A}^{T} \boldsymbol{r}$ and $e=A d$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x, d=A^{T} r \\
& \alpha \leftarrow\|d\|_{2}^{2} /\|A d\|_{2}^{2} \\
& x \leftarrow x+\alpha d
\end{aligned}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction $-\nabla f$.
$>$ Important Note: equivalent to usual steepest descent applied to normal equations $\boldsymbol{A}^{T} \boldsymbol{A x}=\boldsymbol{A}^{T} \boldsymbol{b}$.
$>$ Converges under the condition that \boldsymbol{A} is nonsingular.

