Krylov subspace methods

e Introduction to Krylov subspace techniques
e FOM, GMRES, practical details.
e Symmetric case: Conjugate gradient

e See Chapter 6 of text for details.



» Common feature of one-dimensional projection techniques:

Tnew = T + ad

where d = a certain direction.
» « is defined to optimize a certain function.

» Equivalently: determine « by an orthogonality constraint

In MR:
Example |x(a) = x + ad, withd = b — Ax.
min, ||b — Ax(a)||2 reached iff b — Ax(a) L r

» One-dimensional projection methods are greedy methods. They
are ‘short-sighted'.




Example: |

Recall in Steepest Descent: New direc- | r» < b — Awx,

tion of search 7 is _L to old direction of « <« (7r,7)/(Ar, )
search 7. T < T+ ar

Question: can we do better by combining successive iterates?
»  Yes: Krylov subspace methods..




Krylov subspace methods: Introduction

» Consider MR (or steepest | Tk+1 = b — Az + o)
descent). At each iteration: = r, — L ATL
(I — OékA)’Pk

» |n the end:
rri1 = ([—arA)(I—ag_1A) - (I—agA)rg = prr1(A)rg
where pr11(t) is a polynomial of degree k 4 1 of the form

Pr+1(t) = 1 — tqx(?)

#11] Show that: **+1) = £ L g, (A)ry , withdeg (qr) = k

»  Krylov subspace methods: iterations of this form that are ‘opti-

mal’ [from m-dimensional projection methods]




Krylov subspace methods
Principle: | Projection methods on Krylov subspaces:

Km(A, ’Ul) — span{’vl, A’Ul, e, Am_l’vl}

e The most important class of iterative methods.

e Many variants exist depending on the subspace L.

Simple properties of K, |

» Notation: p = deg. of minimal polynomial of v1. Then:

o K., = {p(A)v,|p = polynomial of degree < m — 1}
o K, = K, for all m > p. Moreover, K, is invariant under A.
edim(K,,) = miff u > m.
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A little review: Gram-Schmadt process

Goal: given X = [x1,...,X;,| compute an orthonormal set
Q = [q1, - -, qm] which spans the same susbpace.

ALGORITHM : 1. Classical Gram-Schmidt

1. Forg =1,....,m Do:
Compute r;; = (T, q;) forz =1,...,7—1

2
3 Compute (j] — XTj — Zz 1 V54
4. Tj; = ||(L||2 /f’l“]] == 0 exit

5. ;= q;/rj
6. EndDo
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ALGORITHM : 2. Modified Gram-Schmidt

1. Forg =1,....,m Do:

2 (jj = Ly

3 Fortr=1,...,73 — 1 Do

4 ri; = (dj, Qi)

5 qj = q; — Ti;qi

6 EndDo

/. Tjij = ||CL||2 /f’l"jj == 0 exit
8. qj:=q;/rj

9. EndDo




Let:

X = [®1y...,2m] (N X M matrix)

Q = [q1-.-5qmn] (N X M matrix)

R = {r;;} ("m X m upper triangular matrix)

» At each step,

J
Lj = E Tij4qi
i=1

Result:

X = QR
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Arnoldi’s algorithm

» Goal: to compute an orthogonal basis of K,,.

» Input: Initial vector v, with ||v1||2 = 1 and m.

Fory =1,...,m Do:
Compute w := Av;
Fort =1,...,7 Do:
hij:= (’U),’Ui)
w = w — h; ;v;
EndDo
Compute: hj+1,j - ||w||2 and Uj+1 = ’w/hj+1,j
EndDo
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Result of orthogonalization process (Arnoldi):

1. Vi, = vy, va, ..., U] orthonormal basis of K.

2. AVm — m—l—lﬁm

3. anAVm — H,, = H,,— last row.
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Arnoldi’s Method for linear systems (L,, = K,,)

From Petrov-Galerkin condition when L,, = K,,, we get

Tm = To + Vi H_'VIr,

» Select v1 = 7r¢/||ro|l2 = 7r0/B in Arnoldi's. Then

Tm = To + /BVer;llel

#13| What is the residual vector r,,, = b — Ax,,,?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's OR-
THORES [1982], Axelsson’s projection method [1981],..

* Also Conjugate Gradient method [see later]
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Minimal residual methods (L,, = AK,,)

When L,, = AK,,,, we let W,, = AV,,, and obtain relation

Ty, = Lo+ Vm[qu;AVm]_lwg;ro
= x0 + Viu[(AV,))T AV, ] 71 (AV;,,) .
» Use again v1 := 1o/ (3 := ||ro||2) and the relation

Avm — m—l—lﬁm

> Lm — Lo —+ Vm[ﬁﬁﬂm]:lﬁgﬁel — Ly -+ mem
where y,,, minimizes ||Be; — H,,y||2 overy € R™.
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» Gives the Generalized Minimal Residual method (GMRES) ([Saad-
Schultz, 1986]):

= x9 + VY Where

8
3
|

<
3
|

myin |Ber — Hyyll2

» Several Mathematically equivalent methods:

@ Axelsson's CGLS e Orthomin (1980)
e Orthodir e GCR
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A few tmplementation details: GMRES

Issue 1 : How to solve the least-squares problem ?

Issue 2:  How to compute residual norm (without computing solu-
tion at each step)?

» Several solutions to both issues. Simplest: use Givens rotations.

» Recall: We want to solve least-squares problem

miny || Ber — Hpyl|2

» Transform the problem into upper triangular one.
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» Rotation matrices of dimension m + 1. Define (with s,? -+ c? =
1):

C; S <— row 1
—S; C; <— row % + 1

1

» Multiply H,,, and right-hand side go = (B3e; by a sequence of
such matrices from the left. » s;, ¢; selected to eliminate h; ;
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T
||

his hig
has hay
hss hss
his hag
hs4

with:

his 3
h25 0
h35 - O
h45 9 gO - O
h55 O
hes 0
o hai
1
Vhi +h3’
o — hi1
=
v hi + h3;
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Repeat

with Qz,

Result:
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Define

Qm = Q1. ..
Rfm — I_{,'(nm) — QmI_{ma

gm = Qm(Be1) = (Y1, Ym+1)" -

»  Since @, is unitary,

min ”/861 — IrImy”Z = min ”gm — Rmy”2°

» Delete last row and solve resulting triangular system.
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Proposition:

1. The rank of AV, is equal to the rank of R,,. In particular, if
Tmm — 0 then A must be singular.

2. The vector y,,, that minimizes ||3e1; — H,,y||2 is given by
Ym = R;ng'mn
3. The residual vector at step m satisfies

b— Ax,,, = Vi1 [,861 - IrImym}
= Vi1Q;,(Ymt1€m+1)

4. As a result, ||b — Axy,|l2 = |Yma]-
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