Krylov subspace methods

- Introduction to Krylov subspace techniques
- FOM, GMRES, practical details.
- Symmetric case: Conjugate gradient
- See Chapter 6 of text for details.

Motivation

Common feature of one-dimensional projection techniques:

$$x_{new} = x + lpha d$$

where d = a certain direction.

 $\succ \alpha$ is defined to optimize a certain function.

 \blacktriangleright Equivalently: determine α by an orthogonality constraint

Example

In MR:

$$x(lpha) = x + lpha d$$
, with $d = b - Ax$.
 $\min_{lpha} \|b - Ax(lpha)\|_2$ reached iff $b - Ax(lpha) \perp r$

One-dimensional projection methods are greedy methods. They are 'short-sighted'.

Example:

Recall in Steepest Descent: New direction of search \tilde{r} is \perp to old direction of search r.

$$egin{array}{l} r \leftarrow b - Ax, \ lpha \leftarrow (r,r)/(Ar,r) \ x \leftarrow x + lpha r \end{array}$$

Question: can we do better by combining successive iterates?
 Yes: Krylov subspace methods..

Krylov subspace methods: Introduction

Consider MR (or steepest descent). At each iteration: $r_{k+1} = b - A(x^{(k)} + \alpha_k r_k)$ $= r_k - \alpha_k A r_k$ $= (I - \alpha_k A) r_k$

In the end:

$$r_{k+1}=(I\!-\!lpha_kA)(I\!-\!lpha_{k-1}A)\cdots(I\!-\!lpha_0A)r_0=p_{k+1}(A)r_0$$
 where $p_{k+1}(t)$ is a polynomial of degree $k+1$ of the form $p_{k+1}(t)=1-tq_k(t)$

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)= ext{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- The most important class of iterative methods.
- Many variants exist depending on the subspace L.

Simple properties of K_m

 \blacktriangleright Notation: μ = deg. of minimal polynomial of v_1 . Then:

- $ullet K_m = \{p(A)v_1|p= ext{polynomial of degree} \leq m-1\}$
- $ullet oldsymbol{K}_m = oldsymbol{K}_\mu$ for all $m \geq \mu$. Moreover, $oldsymbol{K}_\mu$ is invariant under $oldsymbol{A}$.
- $\bullet dim(K_m)=m$ iff $\mu\geq m$.

A little review: Gram-Schmidt process

Goal: given $X = [x_1, \dots, x_m]$ compute an orthonormal set $Q = [q_1, \dots, q_m]$ which spans the same susbpace.

ALGORITHM : 1 Classical Gram-Schmidt

1. For
$$j = 1, ..., m$$
 Do:
2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, ..., j - 1$
3. Compute $\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij}q_i$
4. $r_{jj} = \|\hat{q}_j\|_2$ If $r_{jj} == 0$ exit
5. $q_j = \hat{q}_j/r_{jj}$
6. EndDo

ALGORITHM : 2 Modified Gram-Schmidt

1. For
$$j = 1, ..., m$$
 Do:
2. $\hat{q}_j := x_j$
3. For $i = 1, ..., j - 1$ Do
4. $r_{ij} = (\hat{q}_j, q_i)$
5. $\hat{q}_j := \hat{q}_j - r_{ij}q_i$
6. EndDo
7. $r_{jj} = ||\hat{q}_j||_2$. If $r_{jj} == 0$ exit
8. $q_j := \hat{q}_j/r_{jj}$
9. EndDo

Let:

- $X = [x_1, \dots, x_m] \ (n imes m ext{ matrix})$
- $oldsymbol{Q} = [oldsymbol{q}_1, \dots, oldsymbol{q}_m] \ (oldsymbol{n} imes oldsymbol{m} \ \mathsf{matrix})$
- $R = \{r_{ij}\} \ (m imes m$ upper triangular matrix)

> At each step,

$$x_j = \sum_{i=1}^{\jmath} r_{ij} q_i$$

Result:

X = QR

Arnoldi's algorithm

> Goal: to compute an orthogonal basis of K_m .

 \blacktriangleright Input: Initial vector v_1 , with $\|v_1\|_2 = 1$ and m.

For
$$j = 1, ..., m$$
 Do:
Compute $w := Av_j$
For $i = 1, ..., j$ Do:
 $h_{i,j} := (w, v_i)$
 $w := w - h_{i,j}v_i$
EndDo
Compute: $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$
EndDo

Result of orthogonalization process (Arnoldi):

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m \text{last row.}$

Arnoldi's Method for linear systems $(L_m = K_m)$

From Petrov-Galerkin condition when $L_m = K_m$, we get $x_m = x_0 + V_m H_m^{-1} V_m^T r_0$

 \blacktriangleright Select $v_1 = r_0/\|r_0\|_2 \equiv r_0/eta$ in Arnoldi's. Then

$$x_m=x_0+eta V_m H_m^{-1} e_1$$

2 What is the residual vector $r_m = b - A x_m$?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's OR-THORES [1982], Axelsson's projection method [1981],..

* Also Conjugate Gradient method [see later]

Minimal residual methods $(L_m = AK_m)$

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation $x_m = x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0 = x_0 + V_m [(AV_m)^T A V_m]^{-1} (AV_m)^T r_0.$

 \blacktriangleright Use again $v_1:=r_0/(eta:=\|r_0\|_2)$ and the relation

$$AV_m = V_{m+1}\overline{H}_m$$

> $x_m = x_0 + V_m [\bar{H}_m^T \bar{H}_m]^{-1} \bar{H}_m^T eta e_1 = x_0 + V_m y_m$ where y_m minimizes $\|eta e_1 - \bar{H}_m y\|_2$ over $y \in \mathbb{R}^m$. Gives the Generalized Minimal Residual method (GMRES) ([Saad-Schultz, 1986]):

$$egin{aligned} x_m &= x_0 + V_m y_m & ext{where} \ y_m &= \min_y \|eta e_1 - ar{H}_m y\|_2 \end{aligned}$$

Several Mathematically equivalent methods:

- Axelsson's CGLS Orthomin (1980)
- Orthodir GCR

A few implementation details: GMRES

Issue 1 : How to solve the least-squares problem ?

Issue 2: How to compute residual norm (without computing solution at each step)?

Several solutions to both issues. Simplest: use Givens rotations.

Recall: We want to solve least-squares problem

$$\min_y \|eta e_1 - \overline{H}_m y\|_2$$

Transform the problem into upper triangular one.

> Rotation matrices of dimension m+1. Define (with $s_i^2 + c_i^2 = 1$):

> Multiply \overline{H}_m and right-hand side $\overline{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. > s_i, c_i selected to eliminate $h_{i+1,i}$

► 1-st Rotation:

Text: 6 – Krylov1

13-17

Define

$$egin{aligned} m{Q}_m &= \Omega_m \Omega_{m-1} \dots \Omega_1 \ ar{R}_m &= ar{H}_m^{(m)} = m{Q}_m ar{H}_m, \ ar{g}_m &= m{Q}_m (eta e_1) = (\gamma_1, \dots, \gamma_{m+1})^T. \end{aligned}$$

Since
$$Q_m$$
 is unitary,
$$\min \|eta e_1 - \bar{H}_m y\|_2 = \min \|\bar{g}_m - \bar{R}_m y\|_2.$$

> Delete last row and solve resulting triangular system.

$$R_m y_m = g_m$$

Proposition:

- 1. The rank of AV_m is equal to the rank of R_m . In particular, if $r_{mm} = 0$ then A must be singular.
- 2. The vector y_m that minimizes $\|eta e_1 ar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1}g_m.$$

3. The residual vector at step m satisfies

$$egin{aligned} b - Ax_m &= V_{m+1} \left[eta e_1 - ar{H}_m y_m
ight] \ &= V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1}) \end{aligned}$$

4. As a result, $\|m{b}-m{A}x_m\|_2 = |\gamma_{m+1}|$.