
Krylov subspace methods

• Introduction to Krylov subspace techniques

• FOM, GMRES, practical details.

• Symmetric case: Conjugate gradient

• See Chapter 6 of text for details.

Motivation

ä Common feature of one-dimensional projection techniques:

xnew = x+ αd

where d = a certain direction.

ä α is defined to optimize a certain function.

ä Equivalently: determine α by an orthogonality constraint

Example
In MR:
x(α) = x+ αd, with d = b−Ax.
minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods are greedy methods. They
are ‘short-sighted’.
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Example:

Recall in Steepest Descent: New direc-
tion of search r̃ is ⊥ to old direction of
search r.

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

Question: can we do better by combining successive iterates?

ä Yes: Krylov subspace methods..
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Krylov subspace methods: Introduction

ä Consider MR (or steepest
descent). At each iteration:

rk+1 = b−A(x(k) + αkrk)

= rk − αkArk
= (I − αkA)rk

ä In the end:

rk+1 = (I−αkA)(I−αk−1A) · · · (I−α0A)r0 = pk+1(A)r0

where pk+1(t) is a polynomial of degree k + 1 of the form

pk+1(t) = 1− tqk(t)

-1 Show that: x(k+1) = x(0) + qk(A)r0 , with deg (qk) = k

ä Krylov subspace methods: iterations of this form that are ‘opti-
mal’ [from m-dimensional projection methods]
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km

ä Notation: µ = deg. of minimal polynomial of v1. Then:

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}
•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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A little review: Gram-Schmidt process

Goal: given X = [x1, . . . , xm] compute an orthonormal set
Q = [q1, . . . , qm] which spans the same susbpace.

ALGORITHM : 1 Classical Gram-Schmidt

1. For j = 1, ...,m Do:
2. Compute rij = (xj, qi) for i = 1, . . . , j − 1

3. Compute q̂j = xj −
∑j−1
i=1 rijqi

4. rjj = ‖q̂j‖2 If rjj == 0 exit
5. qj = q̂j/rjj
6. EndDo
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ALGORITHM : 2 Modified Gram-Schmidt

1. For j = 1, ...,m Do:
2. q̂j := xj
3. For i = 1, . . . , j − 1 Do
4. rij = (q̂j, qi)
5. q̂j := q̂j − rijqi
6. EndDo
7. rjj = ‖q̂j‖2. If rjj == 0 exit
8. qj := q̂j/rjj
9. EndDo
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Let:

X = [x1, . . . , xm] (n×m matrix)

Q = [q1, . . . , qm] (n×m matrix)

R = {rij} (m×m upper triangular matrix)

ä At each step,

xj =

j∑

i=1

rijqi

Result:

X = QR
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Arnoldi’s algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m Do:
Compute w := Avj
For i = 1, . . . , j Do:
hi,j := (w, vi)
w := w − hi,jvi

EndDo
Compute: hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

EndDo
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Result of orthogonalization process (Arnoldi):

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm =

@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@

O
Hm =

Vm+1 = [Vm, vm+1]

AVm = Vm+1Hm
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Arnoldi’s Method for linear systems (Lm = Km)

From Petrov-Galerkin condition when Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s. Then

xm = x0 + βVmH
−1
m e1

-2 What is the residual vector rm = b−Axm?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s OR-
THORES [1982], Axelsson’s projection method [1981],..

* Also Conjugate Gradient method [see later]
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Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain relation

xm = x0 + Vm[W T
mAVm]−1W T

mr0

= x0 + Vm[(AVm)TAVm]−1(AVm)Tr0.

ä Use again v1 := r0/(β := ‖r0‖2) and the relation

AVm = Vm+1Hm

ä xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym
where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm.
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ä Gives the Generalized Minimal Residual method (GMRES) ([Saad-
Schultz, 1986]):

xm = x0 + Vmym where

ym = min
y
‖βe1 − H̄my‖2

ä Several Mathematically equivalent methods:

• Axelsson’s CGLS • Orthomin (1980)
• Orthodir • GCR

13-13 Text: 6 – Krylov1

A few implementation details: GMRES

Issue 1 : How to solve the least-squares problem ?

Issue 2: How to compute residual norm (without computing solu-
tion at each step)?

ä Several solutions to both issues. Simplest: use Givens rotations.

ä Recall: We want to solve least-squares problem

miny ‖βe1 −Hmy‖2

ä Transform the problem into upper triangular one.
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ä Rotation matrices of dimension m+ 1. Define (with s2
i + c2

i =
1):

Ωi =




1
. . .

1
ci si
−si ci

1
. . .

1




← row i
← row i+ 1

ä Multiply H̄m and right-hand side ḡ0 ≡ βe1 by a sequence of
such matrices from the left. ä si, ci selected to eliminate hi+1,i
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H̄5 =




h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65



, ḡ0 =




β
0
0
0
0
0




ä 1-st Rotation:

Ω1 =




c1 s1

−s1 c1

1
1

1




with:
s1 =

h21√
h2

11 + h2
21

,

c1 =
h11√

h2
11 + h2

21
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H̄(1)
m =




h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14 h

(1)
15

h
(1)
22 h

(1)
23 h

(1)
24 h

(1)
25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65



, ḡ1 =




c1β
−s1β

0
0
0
0




Repeat
with Ω2,
. . . ,
Ω5.
Result:

H̄
(5)
5 =




h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25

h
(5)
33 h

(5)
34 h

(5)
35

h
(5)
44 h

(5)
45

h
(5)
55

0




, ḡ5 =




γ1

γ2

γ3

.

.
γ6



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Define

Qm = ΩmΩm−1 . . .Ω1

R̄m = H̄(m)
m = QmH̄m,

ḡm = Qm(βe1) = (γ1, . . . , γm+1)
T .

ä Since Qm is unitary,

min ‖βe1 − H̄my‖2 = min ‖ḡm − R̄my‖2.

ä Delete last row and solve resulting triangular system.

Rmym = gm
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Proposition:

1. The rank of AVm is equal to the rank of Rm. In particular, if
rmm = 0 then A must be singular.

2. The vector ym that minimizes ‖βe1 − H̄my‖2 is given by

ym = R−1
m gm.

3. The residual vector at step m satisfies

b−Axm = Vm+1

[
βe1 − H̄mym

]

= Vm+1Q
T
m(γm+1em+1)

4. As a result, ‖b−Axm‖2 = |γm+1|.
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