Krylov subspace methods

e Introduction to Krylov subspace techniques
e FOM, GMRES, practical details.
e Symmetric case: Conjugate gradient

e See Chapter 6 of text for details.

» Common feature of one-dimensional projection techniques:

Thew = T + ad

where d = a certain direction.
» « is defined to optimize a certain function.

» Equivalently: determine a by an orthogonality constraint

In MR:
Example |xz(a) =« + ad, withd =b — Ax.
min, ||b — Axz(a)||2 reached iff b — Az(a) L 7

»  One-dimensional projection methods are greedy methods. They
are ‘short-sighted’.
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Example:

Recall in Steepest Descent: New direc- | » < b — Ax,

tion of search 7 is L to old direction of | & <— (7, 7)/(Ar, 1)
search 7. T < x+ar

Question: can we do better by combining successive iterates?

»  Yes: Krylov subspace methods..
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Krylov subspace methods: Introduction

» Consider MR (or steepest | Tk+1 = b— A(fc(k) + ori)
descent). At each iteration: = rp, — L Ary
= (I — akA)rk

» |n the end:
1 = (I—agA)(I—ag—1A) -+ - (I—apA)rg = prr1(A)ro
where p.11(t) is a polynomial of degree k + 1 of the form

Pr+1(t) = 1 — tqp(t)

Show that: &+ = z(® 4+ g, (A)rg |, with deg (qi) = k

»  Krylov subspace methods: iterations of this form that are ‘opti-

mal’ [from m-dimensional projection methods]
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Krylov subspace methods

Principle: | Projection methods on Krylov subspaces:

K, (A,v1) = span{vy, Avy, -+, Am_lvl}

e The most important class of iterative methods.

e Many variants exist depending on the subspace L.

Simple properties of K,

» Notation: g = deg. of minimal polynomial of v;. Then:

e K,, = {p(A)v1|p = polynomial of degree < m — 1}
o K,, = K, for all m > p. Moreover, K, is invariant under A.
edim(K,,) = miff u > m.
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A little review: Gram-Schmidt process

Goal:  given X = [®1,...,%y,] compute an orthonormal set
Q = [q1,- - - » @m] Which spans the same susbpace.

ALGORITHM : 1. Classical Gram-Schmidt
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1. Fory =1,...,m Do:
2 Compute r;; = (zj,q;) fori =1,...,5 — 1
3 Compute Qj =x; — Z‘Z;ll Tiiq;

4. T = ||q]||2 /f’l‘jj == 0 exit
g a; = 4;/7jj

EndDo
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ALGORITHM : 2. Modified Gram-Schmidt

1. Fory =1,...,m Do:

2 (jj = acj

3 Fori=1,...,5 —1 Do

4. rij = (4, qi)

3. 4j := 4; — 744

6 EndDo

7 ri; = ||@jll2- Ifrj; == 0 exit
8. qj:=q;/rj;

9. EndDo
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Let:

X
Q
R
>

= [Z1y...yTm] (P X M matrix)
= [ql? ) qm] (’I’L X m matrix)
= {rij} (m X m upper triangular matrix)

At each step,

J
Ly = E Tijqi
i=1

Result:
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X = QR
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Arnoldi’s algorithm

»  Goal: to compute an orthogonal basis of K,,.

» Input: Initial vector vy, with ||v||]2 = 1 and m.

Forj =1,...,m Do:
Compute w := Awv;
Fore =1,...,7 Do:

hi,j = (w,v,-)
w = w — h; jv;
EndDo
Compute: hjy1; = [|wll2 and vj11 = w/hji1,;
EndDo
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Result of orthogonalization process (Arnoldi):

1. V,, = [v1, V2, ..., Upy] orthonormal basis of K,y,.
2. AVm - m—l—lﬁm
3. VH{AVm = H,, = H,,— last row.

AV, =

5

I

a

:

I
|
:

Vm+1 - [Vm’ vm+1]
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Arnoldi’s Method for linear systems (L,, = K,,)

From Petrov-Galerkin condition when L,, = K,,, we get

Tm = To + Vi H 'V rg

» Select v; = 7o/||70||2 = r0/B in Arnoldi’s. Then

Ty = T + ﬂVmH;l1€1

What is the residual vector r,,, = b — Ax,,?
Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's OR-
THORES [1982], Axelsson's projection method [1981],..

* Also Conjugate Gradient method [see later]
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Minimal residual methods (L,, = AK,,)

When L,, = AK,,, we let W,,, = AV,,, and obtain relation

Ty = XTo + Vm[anAVm]_IWgrg
= 2o+ Vi [(AV) AV, 71 (AV,,) Trg.

» Use again vy := r¢/(3 := ||70]|2) and the relation

AVm = m-l-lﬁm

» Ty, = To + Vm[ﬁgﬁm]__lﬁgﬂel = xo + mem
where y,,, minimizes ||Be; — H,,y||2 over y € R™.
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» Gives the Generalized Minimal Residual method (GMRES) ([Saad-
Schultz, 1986]):

xo + VinYm where
Ym = min[|Ber — Huyl|2

Lm

» Several Mathematically equivalent methods:

@ Axelsson’s CGLS e Orthomin (1980)
e Orthodir e GCR
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A few implementation details: GMRES

Issue 1 : How to solve the least-squares problem 7

Issue 2:  How to compute residual norm (without computing solu-
tion at each step)?

» Several solutions to both issues. Simplest: use Givens rotations.

» Recall: We want to solve least-squares problem

min, ||Be; — Hny|l2

» Transform the problem into upper triangular one.

13-14 Text: 6 — Krylovl

» Rotation matrices of dimension m + 1. Define (with s? + ¢ =
1):

c; S < row %
—8; ¢ +—rowz+1

»  Multiply H,, and right-hand side go = Be; by a sequence of
such matrices from the left. » s;, ¢; selected to eliminate h;;;
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hii hiz hiz his his B
ha1 has hos hay hos 0
i hss hss hss hss _ 0
H - =
b hys hag hys|’ g0 0
hsy hss 0
» 1-st Rotation:
[ ¢ s i ha;
e o S1=
—51 G with: hi, + h3,
0, = 1 c hii
1 = —m
1 ) Vhi + h3,
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Define

r (1 1 1 1 1)7 r 7
it h%%; héi”; h%i*; h% 1 Qn = Q-
hyy hys hy hag _‘Zlﬂ R, = ﬂ,(nm) = QmHn,
HY — hsz hss hss  hss 7 T G = Q.,(Be;) = e Yman) T
m has has  has » g1 0 g Q (B 1) (’71’ s 7Y +1)
hsa  hss 0 » Since Q,, is unitary,
I hes | 0 2 a
min ||Be; — Hpy|l2 = min ||gn — Rny|l2.
(p(5) () p(5) 2 (5) 1 (5)] - -
Repeat hi h%g) h%g’) h%g) h%g) 71 » Delete last row and solve resulting triangular system.
with Q5 hay hss  hyy  has 72
5 (5) h(s) h(5) h(5) Y3 Rmym = dgm
cee HY = 33 :(ag) ?g) , G5 =
Q5. hi4 h?g)
Result: hss :
i 0 ] _'76_
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Proposition:

1. The rank of AV, is equal to the rank of R,,. In particular, if

Tmm = 0 then A must be singular.

2. The vector y,, that minimizes ||Be; — H,,y||2 is given by

Ym = Ry_nlgm-

3. The residual vector at step m satisfies
b — Awm — Vm+1 [/861 - -E[mym]
= Vim+1QF, (Ymt1€m+1)

4. As a result, ||b — Azp|l2 = |Ymr1]-

13-19

Text: 6 — Krylovl




