UNIVERSITY
 of Minnesota twincities

C S C I 8314
Spring 2021
SPARSE MATRIX COMPUTATIONS

```
Class time : MW 1:00-2:15 am
Room : Online via Zoom
Instructor
Yousef Saad
```

January 19, 2021

Set 3 Applications of sparse matrix techniques

- Applications of graphs; Graph Laplaceans; Networks ...;
- Standard Applications (PDEs, ..)
- Applications in machine learning
- Data-related applications
- Other instances of sparse matrix techniques

About this class: Objectives

Set 1 An introduction to sparse matrices and sparse matrix computations.

- Sparse matrices;
- Sparse matrix direct methods ;
- Graph theory viewpoint; graph theory methods;

Set 2 Iterative methods and eigenvalue problems

- Iterative methods for linear systems
- Algorithms for sparse eigenvalue problems and the SVD
- Possibly: nonlinear equations
\qquad

$>$ Please fill out (now if you can)
This survey
short link url:

Logistics:

> Lecture notes and minimal information will be located here:

8314 at CSE-labs

$\underline{\text { www-users.cselabs.umn.edu/classes/Spring-2021/csci8314/ }}$
There you will find :

- Lecture notes, Schedule of assignments/ tests, class info
> Canvas will contain the rest of the information: assignments, grades, etc.

Matlab

> We will often use matlab for testing algorithms.
> Other documents will be posted in the matlab section of the class web-site.
> Also:
> .. I post the matlab diaries used for the demos (if any).

About lecture notes:

> Lecture notes (like this first set) will be posted on the class web-site - usually before the lecture.
> Note: format used in lectures may be formatted differently - but same contents.
> Review them to get some understanding if possible before class.
> Read the relevant section (s) in the texts or references provided
> Lecture note sets are grouped by topics (sections in the textbook) rather than by lecture.
$>$ In the notes the symbol indicates suggested easy exercises or questions - often [not always] done in class.
> Also: occasional practice exercises posted

CSCI 8314: SPARSE MATRIX COMPUTATIONS

 GENERAL INTRODUCTION- General introduction - a little history
- Motivation
- Resources
- What will this course cover

What this course is about

> Solving linear systems and (to a lesser extent) eigenvalue problems with matrices that are sparse.
$>$ Sparse matrices : matrices with mostly zero entries [details later]
> Many applications of sparse matrices...
$>\ldots$ and we are seing more with new applications everywhere

- Early work on reordering for banded systems, envelope methods
> Various reordering techniques for general sparse matrices introduced.
> Minimal degree ordering [Markowitz - 1957] ...
> ... later used in Harwell MA28 code [Duff] - released in 1977.
> Tinney-Walker Minimal degree ordering for power systems [1967]
> Nested Dissection [A. George, 1973]
> SPARSPAK [commercial code, Univ. Waterloo]
> Elimination trees, symbolic factorization, ...

A brief history

Sparse matrices have been identified as important early on - origins of terminology is quite old. Gauss defined the first method for such systems in 1823. Varga used explicitly the term 'sparse' in his 1962 book on iterative methods.
https://www-users.cs.umn.edu/~saad/PDF/icerm2018.pdf
> Special techniques used for sparse problems coming from Partial Differential Equations
> One has to wait until to the 1960s to see the birth of the general technology available today
> Graphs introduced as tools for sparse Gaussian elimination in 1961 [Seymour Parter]

History: development of iterative methods

> 1950s up to 1970s: focus on "relaxation" methods
> Development of 'modern' iterative methods took off in the mid70s. but...
> ... The main ingredients were in place earlier [late 40s, early 50 s : Lanczos; Arnoldi ; Hestenes (a local!) and Stiefel;]
> The next big advance was the push of 'preconditioning': in effect a way of combining iterative and (approximate) direct methods [Meijerink and Van der Vorst, 1977]

History: eigenvalue problems

> Another parallel branch was followed in sparse techniques for large eigenvalue problems.

- A big problem in 1950s and 1960s : flutter of airplane wings.. This leads to a large (sparse) eigenvalue problem
- Overlap between methods for linear systems and eigenvalue problems [Lanczos, Arnoldi]

Resources

> Matrix market

http://math.nist.gov/MatrixMarket/

> SuiteSparse site (Formerly : Florida collection)
https://sparse.tamu.edu/
SPARSKIT, etc. [SPARSKIT $=$ old written in Fortran. + more recent 'solvers']
http://www.cs.umn.edu/~saad/software
\qquad

Resources - continued

Books: | on sparse direct methods.

> Book by Tim Davis [SIAM, 2006] see syllabus for info
> Best reference [old, out-of print, but still the best]:

- Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981. Englewood Cliffs, NJ.
$>$ Of interest mostly for references:
- I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon press, Oxford, 1986.
- Some coverage in Golub and van Loan [John Hopinks, 4th edition, see chapters 10 to end]

Overall plan for this course

We will begin by sparse matrices in general, their origin, storage, manipulation, etc.
> Graph theory viewpoint
> We will then spend some time on sparse direct methods
> .. back to graphs: Graph Laplaceans and applications; Networks; ...
> .. and then on eigenvalue problems and
> ... iterative methods for linear systems
> ... Plan is somewhat dynamic
$>\ldots$ at the end of semester: a few lectures given by you

$$
{ }^{1-15} 工
$$

- See Chap. 3 of text
- See the "links" page on the class web-site
- See also the various sparse matrix sites.
- Introduction to sparse matrices
- Sparse matrices in matlab -
$>$ Vague definition: matrix with few nonzero entries
$>$ For all practical purposes: an $\boldsymbol{m} \times \boldsymbol{n}$ matrix is sparse if it has $O(\min (m, n))$ nonzero entries.
> This means roughly a constant number of nonzero entries per row and column -
$>$ This definition excludes a large class of matrices that have $O(\log (n))$ nonzero entries per row.
> Other definitions use a slow growth of nonzero entries with respect to \boldsymbol{n} or \boldsymbol{m}.

Pattern of a small sparse matrix
\qquad

..matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,

Goal of Sparse Matrix Techniques

> To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example:
To add two square dense matrices of size \boldsymbol{n} requires $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ operations. To add two sparse matrices \boldsymbol{A} and \boldsymbol{B} requires $\boldsymbol{O}(\boldsymbol{n n z}(A)+\boldsymbol{n n z}(B))$ where $\boldsymbol{n n z}(X)=$ number of nonzero elements of a matrix \boldsymbol{X}
$>$ For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.
\boldsymbol{A}^{-1} is usually dense, but L and \boldsymbol{U} in the LU factor-
Remark: ization may be reasonably sparse (if a good technique is used)
\qquad

ARC 130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORESS: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

Types of sparse matrices

> Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)
> The matrices PORES3 and SHERMAN5 are from Oil Reservoir Simulation. Often: 3 unknowns per mesh point (Oil , Water saturations, Pressure). Structured matrices.
> 40 years ago reservoir simulators used rectangular grids.
> Modern simulators: Finer, more complex physics $>$ harder and larger systems. Also: unstructured matrices
> A naive but representative challenge problem: $100 \times 100 \times 100$ grid + about 10 unknowns per grid point $>N \approx 10^{7}$, and $\boldsymbol{n n z} \approx$ 7×10^{8}.

Two types of methods for general systems:
> Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
> Iterative methods: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods.

Remark:

These two classes of methods have always been in competition.
> 40 years ago solving a system with $n=10,000$ was a challenge
> Now you can solve this in a fraction of a second on a laptop.

Solving sparse linear systems: existing methods

\qquad

- Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.
> 3-D problems lead to more challenging systems [inherent to the underlying graph]

Difficulty:

- No robust 'black-box' iterative solvers.
- At issue: Robustness in conflict with efficiency.
> Iterative methods are starting to use some of the tools of direct solvers to gain 'robustness'

Consensus:

1. Direct solvers are often preferred for two-dimensional problems (robust and not too expensive).
2. Direct methods loose ground to iterative techniques for threedimensional problems, and problems with a large degree of freedom per grid point,

- A few reorderings functions provided.. [will be studied in detail later]
symrcm, symamd, colamd, colperm
> Random sparse matrix generator:
sprand(S) or sprand(m,n, density)
(also textttsprandn(...))
$>$ Diagonal extractor-generator utility:

$$
\text { spdiags }(A), \operatorname{spdiags}(B, d, m, n)
$$

$>$ Other important functions:

Sparse matrices in matlab

> Matlab supports sparse matrices to some extent.
> Can define sparse objects by conversion

$$
A=\operatorname{sparse}(X) ; X=\operatorname{full}(A)
$$

> Can show pattern

$$
\operatorname{spy}(X)
$$

> Define the analogues of ones, eye:

$$
\text { speye }(n, m), \quad \text { spones (pattern) }
$$

\qquad

Graph Representations of Sparse Matrices

> Graph theory is a fundamental tool in sparse matrix techniques.
DEFINITION. A graph \boldsymbol{G} is defined as a pair of sets $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with $\boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V}$. So \boldsymbol{G} represents a binary relation. The graph is undirected if the binary relation is reflexive. It is directed otherwise. \boldsymbol{V} is the vertex set and \boldsymbol{E} is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

R1: Either $\boldsymbol{x}<\boldsymbol{y}$ or \boldsymbol{y} divides \boldsymbol{x}.
R2: \boldsymbol{x} and \boldsymbol{y} are congruent modulo 3. $[\bmod (\mathrm{x}, 3)=\bmod (\mathrm{y}, 3)]$
$>$ Adjacency Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{A} :

- Vertices $V=\{1,2, \ldots ., n\}$.
- Edges $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$.
$>$ Often self-loops (i, i) are not represented [because they are always there]
$>$ Graph is undirected if the matrix has a symmetric structure:

$$
a_{i j} \neq 0 \quad \text { iff } \quad a_{j i} \neq 0
$$

Adjacency graph of:
Graph of a tridiagonal matrix? Of a dense matrix?Recall what a star graph is. Show a matrix whose graph is a star graph. Consider two situations: Case when center node is labeled first and case when it is labeled last.

Example: (directed graph)

Example: (undirected graph)

\qquad
1-33
Chap 3 - sparse1
> Note: Matlab now has a graph function.
$>G=\operatorname{graph}(\mathrm{A})$ creates adjacency graph from \boldsymbol{A}
$>G$ is a matlab class/

- G.Nodes will show the vertices of G
> G.Edges will show its edges.
$>\operatorname{plot}(G)$ will show a representation of the graphDo the following:
- Load the matrix 'Bmat.mat' located in the class web-site (see 'matlab' folder)
- Visualize pattern $(\operatorname{spy}(\mathrm{B}))+$ find: Number of nonzero elements, size, ...
- Generate graph - without self-edges:

```
G = graph(B,'OmitSelfLoops'
```

- Plot the graph -
- \$1M question: Any idea on how this plot is generated?
${ }^{1-36}$

