DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

- See Chap. 2 of text
- Finite difference methods
- Finite elements
- Assembled and unassembled finite element matrices

Why study discretized PDEs?

- ➤ Still the most important source of sparse linear systems
- ➤ Will help understand the structures of the problem and their connections with "meshes" in 2-D or 3-D space
- ➤ Also: iterative methods are often formulated for the PDE directly instead of a discretized (sparse) system.

2-2 _____ Chap 2 – discr

A typical numerical simulation

Physical Problem

 \downarrow

Nonlinear PDEs

1

Discretization

 \downarrow

Linearization (Newton)

1

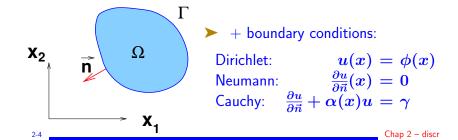
Sequence of Sparse Linear Systems Ax=b

Chap 2 - discr

Example: discretized Poisson equation

Common Partial Differential Equation (PDE) :

$$rac{\partial^2 u}{\partial x_1^2}+rac{\partial^2 u}{\partial x_2^2}=f, ext{ for } x=egin{pmatrix} x_1 \ x_2 \end{pmatrix} ext{ in } \Omega$$
 where $\Omega=$ bounded, open domain $ext{in}\mathbb{R}^2$



3

- $ightharpoonup \Delta = rac{\partial^2}{\partial x_1^2} + rac{\partial^2}{\partial x_2^2}$ is the Laplace operator or Laplacean
- ➤ How to approximate the problem?
- Answer: discretize, i.e., replace continuum with discrete set.
- ➤ Then approximate Laplacean using this discretization
- Many types of discretizations.. wll briefly cover Finite differences and finite elements.

Finite Differences: Basic approximations

Formulas derived from Taylor series expansion:

$$u(x+h) = u(x) + hrac{du}{dx} + rac{h^2d^2u}{2} + rac{h^3d^3u}{6} + rac{h^4}{24} rac{d^4u}{dx^4} (\xi)$$

2-5 _____ Chap 2 - disc

Notation: $\delta^+ u(x) = u(x+h) - u(x) \ \delta^- u(x) = u(x) - u(x-h)$

- ightharpoonup Operations of the type: $\dfrac{d}{dx}\left[a(x)\,\dfrac{d}{dx}\right]$ are very common [in-homogeneous media].
- ➤ The following is a second order approximation:

$$egin{split} rac{d}{dx}igg[a(x)\,rac{du}{dx}igg] &= rac{1}{h^2}\delta^+\left(a_{i-rac{1}{2}}\,\delta^-u
ight) + O(h^2) \ &pprox rac{a_{i+rac{1}{2}}(u_{i+1}-u_i) - a_{i-rac{1}{2}}(u_i-u_{i-1})}{h^2} \end{split}$$

Show that
$$\delta^+\left(a_{i-rac{1}{2}}\,\delta^-u
ight)=\delta^-\left(a_{i+rac{1}{2}}\,\delta^+u
ight)$$

Discretization of PDEs - Basic approximations

➤ Simplest scheme: forward difference

$$egin{aligned} rac{du}{dx} &= rac{u(x+h) - u(x)}{h} - rac{h}{2}rac{d^2u(x)}{dx^2} + O(h^2) \ &pprox rac{u(x+h) - u(x)}{h} \end{aligned}$$

Centered differences for second derivative:

$$rac{d^2 u(x)}{dx^2} = rac{u(x+h) - 2u(x) + u(x-h)}{h^2} - rac{h^2}{12} rac{d^4 u(\xi)}{dx^4},$$
 where $\xi_- \le \xi \le \xi_+$.

2-6 ______ Chap 2 – discr

Finite Differences for 2-D Problems

Consider the simple problem,

$$-\left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}\right) = f \quad \text{in } \Omega$$
 (1)

u = 0 on Γ (2)

 $\Omega=\mathsf{rectangle}\;(0,l_1) imes(0,l_2)$ and Γ its boundary.

Discretize uniformly:

$$egin{aligned} x_{1,i} &= i imes h_1 & i = 0, \dots, n_1 + 1 & h_1 = rac{l_1}{n_1 + 1} \ x_{2,j} &= j imes h_2 & j = 0, \dots, n_2 + 1 & h_2 = rac{l_2}{n_2 + 1} \end{aligned}$$

B _____ Chap 2 – disc

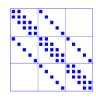
Finite Difference Scheme for the Laplacean

▶ Using centered differences for both the $\frac{\partial^2}{\partial x_1^2}$ and $\frac{\partial^2}{\partial x_2^2}$ terms - with mesh sizes $h_1 = h_2 = h$:

$$egin{aligned} \Delta u(x) &pprox rac{1}{h^2}[u(x_1+h,x_2)+u(x_1-h,x_2)+\ &+u(x_1,x_2+h)+u(x_1,x_2-h)-4u(x_1,x_2)] \end{aligned}$$

The resulting matrix has the following block structure:

$$A=rac{1}{h^2}egin{bmatrix} B & -I \ -I & B & -I \ & -I & B \end{bmatrix}$$



Matrix for 7×5 finite difference mesh

With

$$B = egin{bmatrix} 4 & -1 & & & & \ -1 & 4 & -1 & & & \ & -1 & 4 & -1 & & \ & & -1 & 4 & -1 \ & & & & -1 & 4 \end{bmatrix}.$$

Finite Elements: a quick overview

Background: Green's formula

$$\int_{\Omega}
abla v.
abla u \;\; dx = -\int_{\Omega} v \Delta u \;\; dx + \int_{\Gamma} v rac{\partial u}{\partial ec{n}} \; ds.$$

 \triangleright ∇ = gradient operator. In 2-D:

$$oldsymbol{
abla} u = egin{pmatrix} rac{\partial u}{\partial x_1} \ rac{\partial u}{\partial x_2} \end{pmatrix},$$

- The dot indicates a dot product of two vectors.
- $\Delta u = \mathsf{Laplacean} \ \mathsf{of} \ u$
- \vec{n} is the unit vector that is normal to Γ and directed outwards.

Frechet derivative:

$$rac{\partial u}{\partial ec{v}}(x) = \lim_{h o 0} rac{u(x + h ec{v}) - u(x)}{h}$$

- ➤ Green's formula generalizes the usual formula for integration by parts
- Define

$$egin{aligned} a(u,v) &\equiv \int_\Omega
abla u.
abla v \, dx = \int_\Omega \left(rac{\partial u}{\partial x_1} \, rac{\partial v}{\partial x_1} + rac{\partial u}{\partial x_2} \, rac{\partial v}{\partial x_2} \,
ight) dx \ (f,v) &\equiv \int_\Omega f v \, \, dx. \end{aligned}$$

Denote:

$$(u,v)=\int_{\Omega}u(x)v(x)dx,$$

 \blacktriangleright With Dirichlet BC, the integral on the boundary in Green's formula vanishes \rightarrow

$$a(u,v) = -(\Delta u,v).$$

ightharpoonup Weak formulation of the original problem: select a subspace of reference V of L^2 and then solve

Find
$$u \in V$$
 such that $a(u,v) = (f,v), \ \ orall \ v \in V$

- Finite Element method solves this weak problem...
- > ... by discretization

2-13 Chap 2 – dis

ightharpoonup Can define a (unique) 'hat' function ϕ_j in V_h associated with each x_j s.t.:

$$\phi_j(x_i) = \delta_{ij} = \left\{ egin{array}{ll} 1 & ext{if } x_i = x_j \ 0 & ext{if } x_i
eq x_j \end{array}
ight..$$

 \blacktriangleright Each function u of V_h can be expressed as

$$u(x)=\sum_{j=1}^n \xi_j \phi_j(x).$$
 (*)

 \triangleright The finite element approximation consists of writing the Galerkin condition for functions in V_h :

Find
$$u \in V_h$$
 such that $a(u,v) = (f,v), \ \ orall \ v \in V_h$

 \blacktriangleright Express u in the basis $\{\phi_j\}$ (see *), then substitute above

ightharpoonup The original domain is approximated by the union Ω_h of m triangles K_i ,

Triangulation of Ω :



$$\Omega_h = igcup_{i=1}^m K_i.$$

➤ Some restrictions on angles, edges, etc..

$$V_h = \{\phi \mid \phi_{\mid \Omega_h} \ \in \ \mathcal{C}^0, \ \phi_{\mid \Gamma_h} = 0, \ \phi_{\mid K_j} ext{ linear } orall \ j \}$$

- \triangleright C^0 = set of *continuous* functions
- $ightharpoonup \phi_{|X} ==$ restriction of ϕ to the subset X
- \blacktriangleright Let $x_j, j = 1, \ldots, n$, be the nodes of the triangulation

14 ______ Chap 2 – discr

Result: the linear system

$$\sum_{i=1}^n lpha_{ij} \xi_j = eta_i$$

where

$$\alpha_{ij} = a(\phi_i, \phi_i), \quad \beta_i = (f, \phi_i).$$

The above equations form a linear system of equations

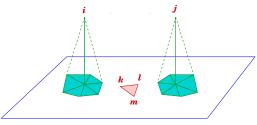
$$Ax = b$$

➤ A is Symmetric Positive Definite

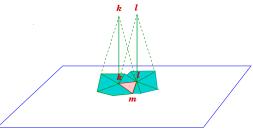
№ Prove it

The Assembly Process: Illustration

If triangle $K \notin \mathsf{support}$ domains of both ϕ_i and ϕ_j then $a_K(\phi_i,\phi_j)=0$

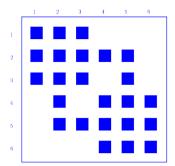


If triangle $K\in$ *both* nonzero domains of ϕ_i and ϕ_j then $a_K(\phi_i,\phi_j)
eq 0$



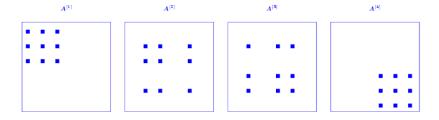
lacksquare So: $a_K(\phi_i,\phi_j)
eq 0$ iff $i \in \{k,l,m\}$ and $j \in \{k,l,m\}$.

2-17 Chap 2 – dis



A simple finite element mesh and the pattern of the corresponding assembled matrix.

-18 ______ Chap 2 – discr



Element matrices $A^{[e]}$, $e=1,\ldots,4$ for FEM mesh shown above

- igwedge Each element contributes a 3 imes 3 submatrix $A^{[e]}$ (spread out)
- ightharpoonup Can use the matrix in un-assembled form To multiply a vector by $oldsymbol{A}$ for example we can do

$$y = Ax = \sum_{e=1}^{nel} A^{[e]}x \; = \; \sum_{e=1}^{nel} P_e A_{K_e}(P_e^Tx).$$

- ightharpoonup Can be computed using the element matrices A_{K_e} no need to assemble
- The product $P_e^T x$ gathers x data associated with the e-element into a 3-vector consistent with the ordering of the matrix A_{K_e} .
- ➤ Advantage: some simplification in process
- ➤ Disadvantage: cost (memory + computations).

Resources: A few matlab scripts

- These (and others) will be posted in the matlab folder of class web-site
- >> help fd3d
 function A = fd3d(nx,ny,nz,alpx,alpy,alpz,dshift)
 NOTE nx and ny must be > 1 -- nz can be == 1.
 5- or 7-point block-Diffusion/conv. matrix. with
- ➤ A stripped-down version is <a>lap2D(nx,ny)
- >> help mark
 [A] = mark(m)
 generates a Markov chain matrix for a random walk
 on a triangular grid. A is sparse of size n=m*(m+1)/2

Chap 2 – discr

Explore A few useful matlab functions

- * kron
- * gplot for ploting graphs
- * reshape for going from say 1-D to 2-D or 3-D arrays

Write a script to generate a 9-point discretization of the Laplacean.

-22 Chap 2 – discr

The Matlab PDE toolbox

➤ The PDE toolbox provides functions for setting up and solving a PDE of the form

$$mrac{\partial^2 u}{\partial t^2}+drac{\partial u}{\partial t}-\Delta(c
abla u)+au=f$$

- model=createmodel(). Initiates the class 'model'
- geometryFromEdges(model,...) Creates the geometry.
- pdegplot(model,...) plots the geometry
- applyBoundaryCondition(model,...) Applies boundary conditions
- ullet specifyCoefficients(model,...) Sets coeff.s m,d,c,a,f above

- generateMesh(model,...) Generates the mesh
- results = pdesolve(model,...) solves the PDE
- pdeplot(model,...) plots solution
- ightharpoonup Also assembleFEMatrices (model,...) assembles the FEM problem, [returns K and M in a structure]

Follow the example in the documentation and get an understanding of the functions that are called.

2-24 ______ Chap 2 - discr