BACKGROUND: A Brief Introduction

to Graph Theory

- General definitions; Representations;
- Graph Traversals;
- Topological sort;

Graphs – definitions & representations

Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, E) with $E \subset V \times V$. So G represents a binary relation. The graph is **undirected** if the binary relation is symmetric. It is **directed** otherwise. V is the vertex set and E is the edge set.

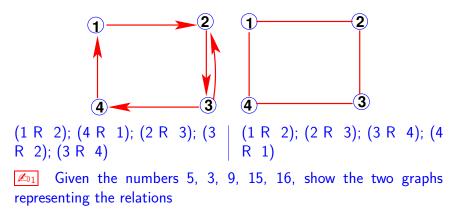
If R is a binary relation between elements in V then, we can represent it by a graph G = (V, E) as follows:

 $(u,v)\in E \leftrightarrow u \; R \; v$

Undirected graph \leftrightarrow symmetric relation

- graphBG

– graphBG



- R1: Either x < y or y divides x.
- R2: \boldsymbol{x} and \boldsymbol{y} are congruent modulo 3. [mod(x,3) = mod(y,3)]
- \blacktriangleright $|E| \leq |V|^2$. For undirected graphs: $|E| \leq |V|(|V|+1)/2$.
- > A sparse graph is one for which $|E| \ll |V|^2$.

Graphs – Examples and applications

> Applications of graphs are numerous.

1. Airport connection system: (a) R (b) if there is a non-stop flight from (a) to (b).

- 2. Highway system;
- 3. Computer Networks;
- 4. Electrical circuits;
- 5. Traffic Flow;
- 6. Social Networks;
- 7. Sparse matrices;

....

4-3

Basic Terminology & notation:

 \blacktriangleright If $(u, v) \in E$, then v is adjacent to u. The edge (u, v) is incident to \boldsymbol{u} and \boldsymbol{v} .

- \succ If the graph is directed, then (u, v) is an outgoing edge from uand incoming edge to v
- \blacktriangleright $Adj(i) = \{j | j \text{ adjacent to } i\}$

 \blacktriangleright The degree of a vertex v is the number of edges incident to v. Can also define the indegree and outdegree. (Sometimes self-edge $i \rightarrow i$ omitted)

- \triangleright |S| is the cardinality of set S [so |Adj(i)| == deg(i)]
- \blacktriangleright A subgraph G' = (V', E') of G is a graph with $V' \subset V$ and $E' \subset E$.

graphBG

Representations of Graphs

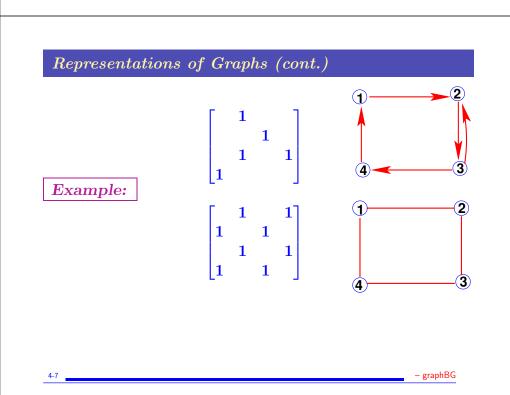
 \blacktriangleright A graph is nothing but a collection of vertices (indices from 1 to n), each with a set of its adjacent vertices [in effect a 'sparse matrix without values'

> Therefore, can use any of the sparse matrix storage formats omit the real values arrays.

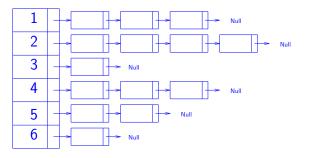
Adjacency matrix Assume V = $\{1,2,\cdots,n\}$. Then the adjacency matrix of G=(V,E) is the n imes n $a_{i,j}=egin{cases} 1 & ext{if } (i,j)\in E \ 0 & ext{Otherwise} \end{cases}$ matrix, with entries:

- graphBG

- graphBG



Dynamic representation: Linked lists



> An array of linked lists. A linked list associated with vertex i, contains all the vertices adjacent to vertex i.

> General and concise for 'sparse graphs' (the most practical situations).

> Not too economical for use in sparse matrix methods

More terminology & notation

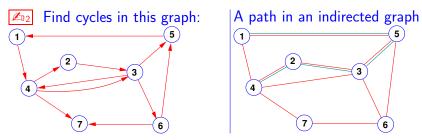
For a given $Y \subset X$, the section graph of Y is the subgraph $G_Y = (Y, E(Y))$ where

 $E(Y) = \{(x,y) \in E | x \in Y, y \text{ in } Y\}$

> A section graph is a clique if all the nodes in the subgraph are pairwise adjacent (\rightarrow dense block in matrix)

A path is a sequence of vertices w_0, w_1, \ldots, w_k such that $(w_i, w_{i+1}) \in E$ for $i = 0, \ldots, k - 1$.

- > The length of the path w_0, w_1, \ldots, w_k is k (# of edges in the path)
- > A cycle is a closed path, i.e., a path with $w_k = w_0$.
- > A graph is acyclic if it has no cycles.

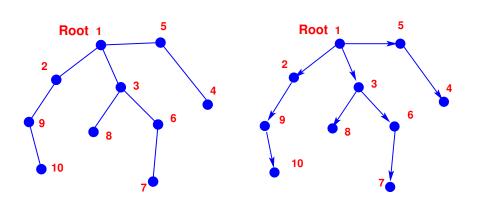


> A path w_0, \ldots, w_k is simple if the vertices w_0, \ldots, w_k are distinct (except that we may have $w_0 = w_k$ for cycles).

► An undirected graph is connected if there is path from every vertex to every other vertex.

> A digraph with the same property is said to be strongly connected

- Another term used "symmetrized" form -
- A <u>directed</u> graph whose undirected form is connected is said to be weakly connected or connected.
- ➤ Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic & connected
- ► Forest = a collection of trees
- In a rooted tree one specific vertex is designated as a root.
- Root determines orientation of the tree edges in parent-child relation



Parent-Child relation: immediate neighbors of root are children. Root is their parent. Recursively define children-parents

- > In example: v_3 is parent of v_6, v_8 and v_6, v_8 are chidren of v_3 .
- \blacktriangleright Nodes that have no children are leaves. In example: v_{10}, v_7, v_8, v_4
- > Descendent, ancestors, ...

4-11

graphBG

– graphB(

Tree traversals

4-13

- ➤ Tree traversal is a process of visiting all vertices in a tree. Typically traversal starts at root.
- Want: systematic traversals of all nodes of tree moving from a node to a child or parent
- > Preorder traversal: Visit parent before children [recursively]
- In example: $v_1, v_2, v_9, v_{10}, v_3, v_8, v_6, v_7, v_5, v_4$
- > Postorder traversal: Visit children before parent [recursively]

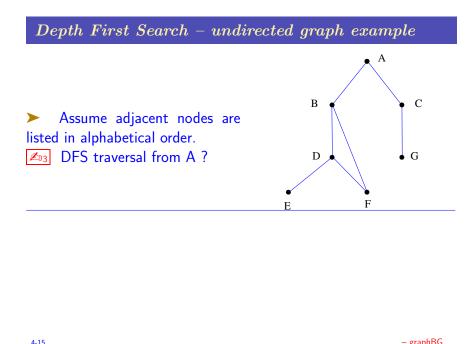
In example : $v_{10}, v_9, v_2, v_8, v_7, v_6, v_3, v_4, v_5, v_1$

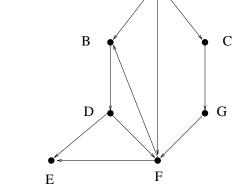
Graphs Traversals – Depth First Search

- > Issue: systematic way of visiting all nodes of a general graph
- ► Two basic methods: Breadth First Search (wll's see later) & ...
- **Depth-First Search**.

Algorithm List = DFS(G, v) (DFS from v)

- Visit and Mark *v*;
- for all edges (v, w) do
 - if w is not marked then List = DFS(G, w)
 - $-\operatorname{\mathsf{Add}} v$ to top of list produced above
- \blacktriangleright If G is undirected and connected, all nodes will be visited
- \succ If G is directed and strongly connected, all nodes will be visited



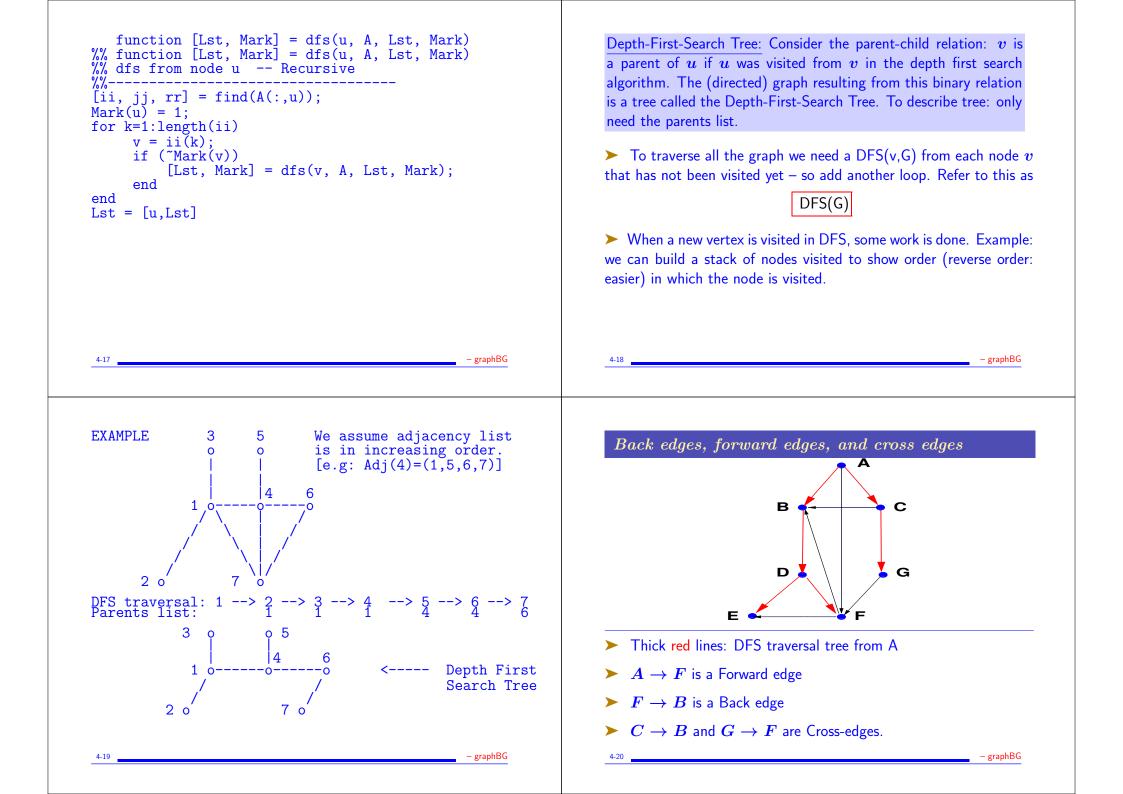


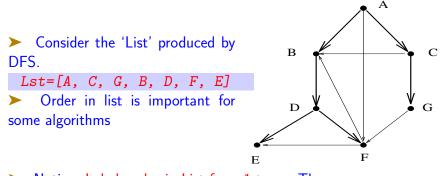
> Assume adjacent nodes are listed in alphabetical order.

▶ DFS traversal from A?

– graphBG

– graphBG





- Notice: Label nodes in List from 1 to n . Then:
- \bullet Tree-edges / Forward edges : labels increase in \rightarrow
- Cross edges : labels in/de-crease in \rightarrow [depends on labeling]
- Back-edges : labels decrease in \rightarrow

Properties of Depth First Search

> If G is a connected undirected (or strongly connected) graph, then each vertex will be visited once and each edge will be inspected at least once.

> Therefore, for a connected undirected graph, The cost of DFS is O(|V| + |E|)

▶ If the graph is undirected, then there are no cross-edges. (all non-tree edges are called 'back-edges')

Theorem: A directed graph is acyclic iff a DFS search of **G** yields no back-edges.

Terminology: Directed Acyclic Graph or DAG

	logical	
-10000	$\alpha \alpha \gamma c \alpha r$	5011
TOPO	<i>Gyucuu</i>	

4-21

<u>The Problem</u>: Given a Directed Acyclic Graph (DAG), order the vertices from 1 to n such that, if (u, v) is an edge, then u appears before v in the ordering.

> Equivalently, label vertices from 1 to n so that in any (directed) path from a node labelled k, all vertices in the path have labels >k.

- Many Applications
- Prerequisite requirements in a program
- Scheduling of tasks for any project
- > Parallel algorithms;
- > ...

Topological Sorting: A first algorithm

<u>Property exploited</u>: An acyclic Digraph must have at least one vertex with indegree = 0.

▲ Prove this

Algorithm:

- > First label these vertices as 1, 2, ..., k;
- > Remove these vertices and all edges incident from them
- Resulting graph is again acyclic ... \exists nodes with indegree = 0. label these nodes as $k + 1, k + 2, \ldots$,
- ► Repeat..

4-24

Explore implementation aspects.

4-23

– graphBG

- graphBG

– graphBG

Alternative methods: Topological sort from DFS

- > Depth first search traversal of graph.
- > Do a 'post-order traversal' of the DFS tree.

> dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of Lst after finishing the traversal from v

graphBG

4-25

GRAPH MODELS FOR SPARSE MATRICES

- See Chap. 3 of text
- Sparse matrices and graphs.
- Bipartite model, hypergraphs
- Application: Paths in graphs, Markov chains

Lst = DFS(G,v)

- Visit and Mark *v*;
- ullet for all edges (v,w) do
 - if w is not marked then Lst = DFS(G, w)
- Lst = [v, Lst]
- Topological order given by the final Lst array of Tsort
- **Z**₁₇ Explore implementation issue
- ✓ Implement in matlab
- ✓ng Show correctness [i.e.: is this indeed a topol. order? hint: no back-edges in a DAG]

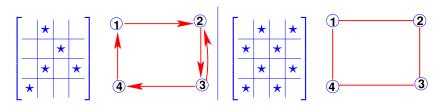
Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n imes n matrix A :

$$V = \{1, 2, ..., N\}$$
 $E = \{(i, j) | a_{ij} \neq 0\}$

 \blacktriangleright G == undirected if A has a symmetric pattern

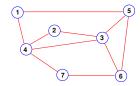
Example:



– graph

graphBG

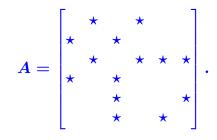
 $\not \mathbb{Z}_{10}$ Show the matrix pattern for the graph on the right and give an interpretation of the path v_4, v_2, v_3, v_5, v_1 on the matrix



> A separator is a set Y of vertices such that the graph G_{X-Y} is disconnected.

Example: $|Y = \{v_3, v_4, v_5\}$ is a separator in the above figure

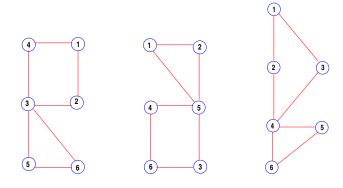
Example: Adjacency graph of:



Example: For any adjacency matrix A, what is the graph of A^2 ? [interpret in terms of paths in the graph of A]

> Two graphs are isomorphic is there is a mapping between the vertices of the two graphs that preserves adjacency.

 \swarrow_{11} Are the following 3 graphs isomorphic? If yes find the mappings between them.

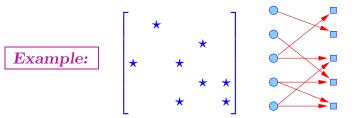


> Graphs are identical – labels are different

$Bipartite\ graph\ representation$

Each row is represented by a vertex; Each column is represented by a vertex.

> Relations only between rows and columns: Row i is connected to column j if $a_{ij} \neq 0$



▶ Bipartite models used only for specific cases [e.g. rectangular matrices, ...] - By default we use the standard definition of graphs.

– graph

– gr

Interpretation of graphs of matrices

 \mathbb{Z}_{12} In which of the following cases is the underlying physical mesh the same as the graph of A (in the sense that edges are the same):

- Finite difference mesh [consider the simple case of 5-pt and 7-pt FD problems then 9-point meshes.]
- Finite element mesh with linear elements (e.g. triangles)?
- Finite element mesh with other types of elements? [to answer this question you would have to know more about higher order elements]
- **4** In the graph of A + B (for two $n \times n$ matrices)?

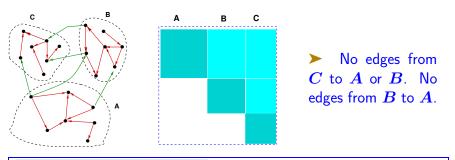
Paths in graphs

Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for $k \ge 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $(A^k)_{u,v}$.

Proof: Proof is by induction.

Recall (definition): A matrix is *reducible* if it can be permuted into a block upper triangular matrix.

▶ Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.



Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix A has a real, positive eigenvalue λ_1 such that: (i) λ_1 is a simple eigenvalue of A; (ii) λ_1 admits a positive eigenvector u_1 ; and (iii) $|\lambda_i| \leq \lambda_1$ for all other eigenvalues λ_i where i > 1.

 \succ The spectral radius is equal to the eigenvalue λ_1

> Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the eigenvalue $\lambda = d$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_1 .

4-3

4-33

Application: Markov Chains

- Read about Markov Chains in Sect. 10.9 of: https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
- > The stationary probability satisfies the equation:

 $\pi P = \pi$

Where π is a row vector.

> P is the probability transition matrix and it is 'stochastic':

A matrix P is said to be *stochastic* if : (i) $p_{ij} \ge 0$ for all i, j(ii) $\sum_{j=1}^{n} p_{ij} = 1$ for $i = 1, \dots, n$ (iii) No column of P is a zero column.

4-37

To From	Fr	So.	Ju.	Sr.	Grad	lwd
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
lwd	.2	.2	.1	.15	0	1

 \swarrow_{17} What is P? Assume initial population is $x_0 = [10, 16, 12, 12, 0, 0]$ and do a follow the population for a few years. What is the probability that a student will graduate? What is the probability that s/he leaves without a degree?

- > Spectral radius is ≤ 1 [Why?]
- Assume P is irreducible. Then:

> Perron Frobenius $\rightarrow \rho(P) = 1$ is an eigenvalue and associated eigenvector has positive entries.

- > Probabilities are obtained by scaling π by its sum.
- Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

4-3

A few words about hypergraphs

> Hypergraphs are very general.. Ideas borrowed from VLSI work

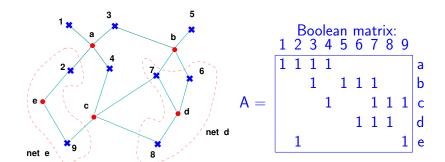
Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations

> Hypergraphs can better express complex graph partitioning problems and provide better solutions.

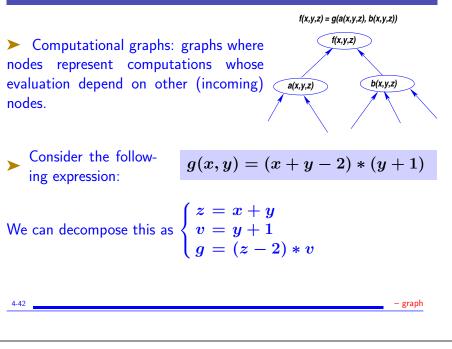
> Example: completely nonsymmetric patterns ...

 \blacktriangleright .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for text data

Example: $V = \{1, \dots, 9\}$ and $E = \{a, \dots, e\}$ with $a = \{1, 2, 3, 4\}$, $b = \{3, 5, 6, 7\}$, $c = \{4, 7, 8, 9\}$, $d = \{6, 7, 8\}$, and $e = \{2, 9\}$

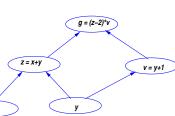


A few words on computational graphs



Corresponding computational graph:

4-41



Siven values of x, y we want to (a) Evaluate the nodes and also (b) derivatives of g w.r.t x, y at the nodes

(a) is trivial - just follow the graph up - starting from the leaves (that contain x and y)

(b): Use the chain rule – here shown for $oldsymbol{x}$ only using previous setting

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial a} \frac{da}{dx} + \frac{\partial g}{\partial b} \frac{db}{dx}$$

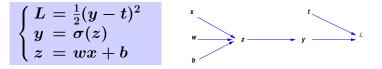
Z₀₁₈ For the above example compute values at nodes and derivatives when x = -1, y = 2.

Back-Propagation

➤ Often we want to compute the gradient of the function at the root, once the nodes have been evaluated

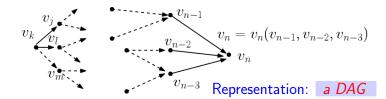
▶ The derivatives can be calculated by going backward (or down the tree)

> Here is a very simple example from Neural Networks



> Note that t (desired output) and x (input) are constant.

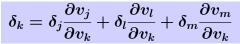
4-4



- > Last node (v_n) is the target function. Let us rename it f.
- \blacktriangleright Nodes $v_i, i = 1, \cdots, e$ with indegree 0 are the variables
- \blacktriangleright Want to compute $\partial f/\partial v_1, \partial f/\partial v_2, \cdots, \partial f/\partial v_e$
- > Simply use the chain rule. Look for example at node v_k in figure

∂f _	$\partial f\partial v_j$	$\partial f \ \partial v_l$	$\partial f \partial v_m$
$\overline{\partial v_k}$ –	$iggrigadown \overline{\partial v_j} \overline{\partial v_k} iggradown$	$\left[rac{\partial v_l}{\partial v_k} ight]$	$^{\vdash}\overline{\partial v_m}\overline{\partial v_k}$

4-45



 $\begin{array}{l} \blacktriangleright \quad \text{To compute the } \delta_k \text{'s once the } v_j \text{'s} \\ \text{have been computed (in a 'forward' prop-} \quad \mathcal{V}_k \\ \text{agation)} - \text{proceed backward.} \\ \blacktriangleright \quad \delta_j, \delta_l, \delta_m \text{ available and } \partial v_i / \partial v_k \\ \text{computable. Nore } \delta_n \equiv 1. \end{array}$

► However: cannot just do this in any order. Must follow a topological order in order to obey dependencies.

graph

Example:	

