Sparse Triangular Systems

e Triangular systems
e Sparse triangular systems with dense right-hand sides
e Sparse triangular systems with sparse right-hand sides

e A sparse factorization based on sparse triangular solves

Sparse Triangular linear systems: the problem

The Problem: A is an n X m matrix, and b a vector of R™. Find
x such that:

Ax =0>b

» x is the unknown vector, b the right-hand side, and A is the
coefficient matrix

» We consider the case when A is upper (or lower)triangular.

Two cases:

1. A sparse, b dense vector [solve once or many times|

2. A sparse, b sparse vector [solve once or many times]

5-2 Davis: chap 3 - Triang

Triangular linear systems

2 4 47 [z, 2
0 5 —2| x| = |1
00 2| |z 4

Fore =m:—1:1 do:
t::i
Forg =14+ 1:ndo

Back—Sub.stltutlon t:=1t— ayx;
Row version End
£Lr; = t/aii
End
Operation count?
5-3 Davis: chap 3 - Triang

lllustration for sparse case | (Sparse A, dense b)

» This will use the CSR data structure

» Inner product of a sparse row with a dense column

» Sparse BLAS: Sparse ‘sdot’

5.4 Davis: chap 3 — Triang

» Recall:
typedef struct SpaFmt {

| C-style CSR format - used internally
| for all matrices in CSR format

|- */
int n;
int *nzcount; /* length of each row */
int **ja; /* to store column indices */

double **ma; /* to store nonzero entries */
} CsMat, *csptr;

» Can store rows of a matrix (CSR) or its columns (CSC)

» For triangular systems that are solved once, or many times with
same matrix, we will assume that diagonal entry is stored in first
location in inverted form.

» Result:

5-5 Davis: chap 3 - Triang

void Usol(csptr mata, double *b, double *x)

int i, k, *ki;

double *ma;

for (i=mata->n-1; i>=0; i--) {
ma = mata->mal[i];
ki = mata->jali];
x[i] = b[i] ;

// Note: diag. entry avoided
for (k=1; k<mata->nzcount[i]; k++)
x[i] -= malk] * x[kil[k]];

x[i] *= mal[0];

3

» Operation count?

5-6 Davis: chap 3 - Triang

Column version

» Column version of back-subsitution:

Fory=mn:—1:1do:
z; = bj/aj;
Fore =1:53 —1do
bi = bi—mj*aij
End
End

Back-Substitution
Column version

Justify the above algorithm [Show that it does indeed give the
solution]

5-7 Davis: chap 3 - Triang

lllustration for sparse case | (Sparse A, dense b)

» Uses the CSC format — (CsMat struct for columns of A)

» Sparse BLAS : sparse ‘saxpy’

5-8 Davis: chap 3 - Triang

» Assumes diagonal entry stored first in inverted form

void UsolC(csptr mata, double *b, double *x)

int i, k, *xki;
double *ma;
for (i=mata->n-1; i>=0; i--) {
ja = U->jafil;
ma = U->mali];
x[i] *= ma[0];
// Note: diag. entry avoided
for(j = 1; j < U->nzcount[i]; j++)
. x[jaljl] -= malj] * x[i];
}

Operation count ?

5-9 Davis: chap 3 - Triang

Sparse A and sparse b

lllustration: = Consider solving Lx = b in the situation:

%k %k
k %k
L=" * b=
k *k
k k k
E3 k

Show progress of the pattern of @ = L~'b by performing
symbolically a column solve for system Lx = b.

Show how this pattern can be determined with Topological
sorting. Generalize to any sparse b.

5-10 Davis: chap 3 - Triang

Sparse A and sparse b: Example

» Triangular system of previous example

» DAG shown in next figure \

» Sets dependencies between tasks: @
» Edge i — j meansa(j,i) =1 (J
requires)

» Root: node 1 (see right-hand side b) ® ©
» Topological sort: 1, 3, 5, 2, 6, 4 [as produced by a DFS from 1]

» In many cases, this leads to a short traversal

Example: remove link 1 — 2 and redo

5-11 Davis: chap 3 - Triang

Consider a triangular sys-
tem with the following graph
where b has nonzero entries in

v

positions 3 and 7. (1) Progress (@) (6)
of solution based on Topolog. @
sort; (2) Pattern of solution. /

(3) Verify pattern with matlab.

(19

Same questions if b has (only) a nonzero entry in position 1.

5-12 Davis: chap 3 - Triang

LU factorization from sparse triangular solves

» LU factorization built one column at a time. At step k:

» Step 0: Set the terms 7 in Ly, to zero. Result = Ly

» Step 1: Solve Liyw = ay [Sparse L., sparse RHS]

» Step 2: set
We want: L, U, =A, (=A1:n,1:k))
SANAE T A w 0
nxn nxk nxk 1
w2 ;
_ ; _ - ; 0
1 r x x|7 wy, 1 0
? u = z=—
* 1 r T 0 W | Wei1
* x 1 x| . : W2
* % % | 1 7| = A 0 _
* x x| 71 0 0 w
* % k| 7 1 0 "
L k ok ok |7 1] | 0] » Then L U, = A} with
» In blue: has been determined. In red: to be determined
5-13 Davis: chap 3 - Triang2 5-14 Davis: chap 3 - Triang2
» Key step: solve triangular system
1 r T T » In sparse case: sparse triangular system with sparse right-hand
* 1 T T | U .
side
* % 1 x :
* % x| 1 : ug » Use topological sorting at each step
* ok ok zpp) 1 L g » Scheme derived from this known as ‘left-looking’ sparse LU —
* ok k|
O 1 0 » Also known as ‘Gilbert and Peierls’ approach
Ly Ui » Reference: J. R. Gilbert and T. Peierls, Sparse partial pivoting

» Verification: Note L, = Ek + zez; Also i}kz =z
» Must verify only LU (:, k) = ag, ie., Lyu = ay
Liu = (L + ze)u = Li(I + zel)u

= I}k(u + wgz) = Lyw = ay,

5-15 Davis: chap 3 — Triang2

in time proportional to arithmetic operations, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 862-874

Benefit of this approach: Partial pivoting is easy. Show how
you would do it.

5-16 Davis: chap 3 — Triang2

