
Sparse Triangular Systems

• Triangular systems

• Sparse triangular systems with dense right-hand sides

• Sparse triangular systems with sparse right-hand sides

• A sparse factorization based on sparse triangular solves

Sparse Triangular linear systems: the problem

The Problem: A is an n×n matrix, and b a vector of Rn. Find
x such that:

Ax = b

ä x is the unknown vector, b the right-hand side, and A is the
coefficient matrix

ä We consider the case when A is upper (or lower)triangular.

Two cases:

1. A sparse, b dense vector [solve once or many times]

2. A sparse, b sparse vector [solve once or many times]
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Triangular linear systems

Example:
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Back-Substitution
Row version

For i = n : −1 : 1 do:
t := bi
For j = i + 1 : n do

t := t− aijxj

End
xi = t/aii

End

-1 Operation count?
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Illustration for sparse case (Sparse A, dense b)

ä This will use the CSR data structure

ä Inner product of a sparse row with a dense column

ä Sparse BLAS: Sparse ‘sdot’
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ä Recall:

typedef struct SpaFmt {
/*---------------------------------------------
| C-style CSR format - used internally
| for all matrices in CSR format
|---------------------------------------------*/

int n;
int *nzcount; /* length of each row */
int **ja; /* to store column indices */
double **ma; /* to store nonzero entries */

} CsMat, *csptr;

ä Can store rows of a matrix (CSR) or its columns (CSC)

ä For triangular systems that are solved once, or many times with
same matrix, we will assume that diagonal entry is stored in first
location in inverted form.

ä Result:
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void Usol(csptr mata, double *b, double *x)
{

int i, k, *ki;
double *ma;
for (i=mata->n-1; i>=0; i--) {

ma = mata->ma[i];
ki = mata->ja[i];
x[i] = b[i] ;

// Note: diag. entry avoided
for (k=1; k<mata->nzcount[i]; k++)

x[i] -= ma[k] * x[ki[k]];
x[i] *= ma[0];

}
}

ä Operation count?
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Column version

ä Column version of back-subsitution:

Back-Substitution
Column version

For j = n : −1 : 1 do:
xj = bj/ajj

For i = 1 : j − 1 do
bi := bi − xj ∗ aij

End
End

-2 Justify the above algorithm [Show that it does indeed give the
solution]
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Illustration for sparse case (Sparse A, dense b)

ä Uses the CSC format – (CsMat struct for columns of A)

ä Sparse BLAS : sparse ‘saxpy’
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ä Assumes diagonal entry stored first in inverted form

void UsolC(csptr mata, double *b, double *x)
{

int i, k, *ki;
double *ma;
for (i=mata->n-1; i>=0; i--) {

ja = U->ja[i];
ma = U->ma[i];
x[i] *= ma[0];

// Note: diag. entry avoided
for( j = 1; j < U->nzcount[i]; j++ )

x[ja[j]] -= ma[j] * x[i];
}

}

-3 Operation count ?
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Sparse A and sparse b

Illustration: Consider solving Lx = b in the situation:

L =

∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

b =

∗

-4 Show progress of the pattern of x = L−1b by performing
symbolically a column solve for system Lx = b.

-5 Show how this pattern can be determined with Topological
sorting. Generalize to any sparse b.
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Sparse A and sparse b: Example

ä Triangular system of previous example

ä DAG shown in next figure

ä Sets dependencies between tasks:
ä Edge i→ j means a(j, i) = 1 (j
requires i)

ä Root: node 1 (see right-hand side b)

1

5

64

2 3

ä Topological sort: 1, 3, 5, 2, 6, 4 [as produced by a DFS from 1]

ä In many cases, this leads to a short traversal

-6 Example: remove link 1→ 2 and redo
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-7 Consider a triangular sys-
tem with the following graph
where b has nonzero entries in
positions 3 and 7. (1) Progress
of solution based on Topolog.
sort; (2) Pattern of solution.
(3) Verify pattern with matlab.
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-8 Same questions if b has (only) a nonzero entry in position 1.
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LU factorization from sparse triangular solves

ä LU factorization built one column at a time. At step k:

We want: Lk︸︷︷︸
n×n

Uk︸︷︷︸
n×k

= Ak︸︷︷︸
n×k

(≡ A(1 : n, 1 : k))




1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ ? 1
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= Ak

ä In blue: has been determined. In red: to be determined
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ä Step 0: Set the terms ? in Lk to zero. Result ≡ L̃k

ä Step 1 : Solve L̃kw = ak [Sparse L̃k, sparse RHS]

ä Step 2: set

u =

w1

w2
...

wk

0
...
0
0

z =
1

wk

0
...
0
0

wk+1

wk+2
...

wn

ä Then LkUk = Ak with
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1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ zk+1 1
∗ ∗ ∗ ... 1
∗ ∗ ∗ zn 1




︸ ︷︷ ︸
Lk

;




x x x u1

x x u2

x ...
uk

0
0
0




︸ ︷︷ ︸
Uk

ä Verification: Note Lk = L̃k + zeTk ; Also L̃kz = z

ä Must verify only LkUk(:, k) = ak, i.e., Lku = ak

Lku = (L̃k + zeTk )u = L̃k(I + zeTk )u

= L̃k(u + wkz) = L̃kw = ak
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ä Key step: solve triangular system

ä In sparse case: sparse triangular system with sparse right-hand
side

ä Use topological sorting at each step

ä Scheme derived from this known as ‘left-looking’ sparse LU –

ä Also known as ‘Gilbert and Peierls’ approach

ä Reference: J. R. Gilbert and T. Peierls, Sparse partial pivoting
in time proportional to arithmetic operations, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 862-874

-9 Benefit of this approach: Partial pivoting is easy. Show how
you would do it.
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